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Abstract

The Air Traffic Management (ATM) system in the busiest airspaces in the world
is currently being overhauled to deal with multiple capacity, socioeconomic, and envi-
ronmental challenges. One major pillar of this process is the shift towards a concept
of operations centered on aircraft trajectories (called Trajectory-Based Operations or
TBO in Europe) instead of rigid airspace structures. However, its successful implemen-
tation (and, thus, the realization of the associated improvements in ATM performance)
rests on appropriate understanding and management of uncertainty. Due to its complex
socio-technical structure, the design and operations of the ATM system are heavily im-
pacted by uncertainty, proceeding from multiple sources and propagating through the
interconnections between its subsystems.

One major source of ATM uncertainty is weather. Due to its nonlinear and chaotic
nature, a number of meteorological phenomena of interest cannot be forecasted with
complete accuracy at arbitrary lead times, which leads to uncertainty or disruption in
individual air and ground operations that propagates to all ATM processes. Therefore,
in order to achieve the goals of SESAR and similar programs, it is necessary to deal
with meteorological uncertainty at multiple scales, from the trajectory prediction and
planning processes to flow and traffic management operations.

This thesis addresses the problem of single-aircraft flight planning considering two
important sources of meteorological uncertainty: wind prediction error and convective
activity. As the actual wind field deviates from its forecast, the actual trajectory will
diverge in time from the planned trajectory, generating uncertainty in arrival times,
sector entry and exit times, and fuel burn. Convective activity also impacts trajectory
predictability, as it leads pilots to deviate from their planned route, creating challenging
situations for controllers. In this work, we aim to develop algorithms and methods
for aircraft trajectory optimization that are able to integrate information about the
uncertainty in these meteorological phenomena into the flight planning process at both
pre-tactical (before departure) and tactical horizons (while the aircraft is airborne), in
order to generate more efficient and predictable trajectories.

To that end, we frame flight planning as an optimal control problem, modeling the
motion of the aircraft with a point-mass model and the BADA performance model. Op-
timal control methods represent a flexible and general approach that has a long history
of success in the aerospace field. As a numerical scheme, we use direct methods, which
can deal with nonlinear systems of moderate and high-dimensional state spaces in a
computationally manageable way. Nevertheless, while this framework is well-developed
in the context of deterministic problems, the techniques for the solution of practical
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x Abstract

optimal control problems under uncertainty are not as mature, and the methods pro-
posed in the literature are not applicable to the flight planning problem as it is now
understood.

The first contribution of this thesis addresses this challenge by introducing a frame-
work for the solution of general nonlinear optimal control problems under parametric
uncertainty. It is based on an ensemble trajectory scheme, where the trajectories of the
system under multiple scenarios are considered simultaneously within the same dynami-
cal system and the uncertain optimal control problem is turned into a large conventional
optimal control problem that can be then solved by standard, well-studied direct meth-
ods in optimal control. We then employ this approach to solve the robust flight plan
optimization problem at the planning horizon. In order to model uncertainty in the
wind and estimating the probability of convective conditions, we employ Ensemble Pre-
diction System (EPS) forecasts, which are composed by multiple predictions instead of
a single deterministic one. The resulting method can be used to optimize flight plans for
maximum expected efficiency according to the cost structure of the airline; additionally,
predictability and exposure to convection can be incorporated as additional objectives.
The inherent tradeoffs between these objectives can be assessed with this methodology.

The second part of this thesis presents a solution for the rerouting of aircraft in
uncertain convective weather scenarios at the tactical horizon. The uncertain motion of
convective weather cells is represented with a stochastic model that has been developed
from the output of a deterministic satellite-based nowcast product, Rapidly Developing
Thunderstorms (RDT). A numerical optimal control framework, based on the point-
mass model with the addition of turn dynamics, is employed for optimizing efficiency
and predictability of the proposed trajectories in the presence of uncertainty about
the future evolution of the storm. Finally, the optimization process is initialized by a
randomized heuristic procedure that generates multiple starting points. The combined
framework is able to explore and as exploit the space of solution trajectories in order to
provide the pilot or the air traffic controller with a set of different suggested avoidance
trajectories, as well as information about their expected cost and risk.

The proposed methods are tested on example scenarios based on real data, showing
how different user priorities lead to different flight plans and what tradeoffs are then
present. These examples demonstrate that the solutions described in this thesis are
adequate for the problems that have been formulated. In this way, the flight planning
process can be enhanced to increase the efficiency and predictability of individual aircraft
trajectories, which would lead to higher predictability levels of the ATM system and thus
improvements in multiple performance indicators.



Resumen

El sistema de gestión del tráfico aéreo (Air Traffic Management, ATM) en los espacios
aéreos más congestionados del mundo está siendo reformado para lidiar con múltiples
desafíos socioeconómicos, medioambientales y de capacidad. Un pilar de este proceso es
el gradual reemplazo de las estructuras rígidas de navegación, basadas en aerovías y way-
points, hacia las operaciones basadas en trayectorias. No obstante, la implementación
exitosa de este concepto y la realización de las ganancias esperadas en rendimiento ATM
requiere entender y gestionar apropiadamente la incertidumbre. Debido a su compleja
estructura socio-técnica, el diseño y operaciones del sistema ATM se encuentran mar-
cadamente influidos por la incertidumbre, que procede de múltiples fuentes y se propaga
por las interacciones entre subsistemas y operadores humanos.

Uno de los principales focos de incertidumbre en ATM es la meteorología. Debido a su
naturaleza no-linear y caótica, muchos fenómenos de interés no pueden ser pronosticados
con completa precisión en cualquier horizonte temporal, lo que crea disrupción en las
operaciones en aire y tierra que se propaga a otros procesos de ATM. Por lo tanto,
para lograr los objetivos de SESAR e iniciativas análogas, es imprescindible tener en
cuenta la incertidumbre en múltiples escalas espaciotemporales, desde la predicción de
trayectorias hasta la planificación de flujos y tráfico.

Esta tesis aborda el problema de la planificación de vuelo de aeronaves individuales
considerando dos fuentes importantes de incertidumbre meteorológica: el error en la
predicción del viento y la actividad convectiva. Conforme la realización del viento se
desvía de su previsión, la trayectoria real se desviará temporalmente de la planificada, lo
que implica incertidumbre en tiempos de llegada a sectores y aeropuertos y en consumo
de combustible. La actividad convectiva también tiene un impacto en la predictibilidad
de las trayectorias, puesto que obliga a los pilotos a desviarse de sus planes de vuelo
para evitarla, cambiado así la situación de tráfico. En este trabajo, buscamos desar-
rollar métodos y algoritmos para la optimización de trayectorias que puedan integrar
información sobre la incertidumbre en estos fenómenos meteorológicos en el proceso de
diseño de planes de vuelo en horizontes de planificación (antes del despegue) y tácticos
(durante el vuelo), con el objetivo de generar trayectorias más eficientes y predecibles.

Con este fin, formulamos la planificación de vuelo como un problema de control
óptimo, modelando la dinámica del avión con un modelo de masa puntual y el modelo
de rendimiento BADA. El control óptimo es un marco flexible y general con un largo
historial de éxito en el campo de la ingeniería aeroespacial. Como método numérico,
empleamos métodos directos, que son capaces de manejar sistemas dinámicos de alta
dimensión con costes computacionales moderados. No obstante, si bien esta metodología
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es madura en contextos deterministas, la solución de problemas prácticas de control
óptimo bajo incertidumbre en la literatura no está tan desarrollada, y los métodos
propuestos en la literatura no son aplicables al problema de interés.

La primera contribución de esta tesis hace frente a este reto mediante la introduc-
ción de un marco numérico para la resolución de problemas generales de control óptimo
no-lineal bajo incertidumbre paramétrica. El núcleo de este método es un esquema de
conjunto de trayectorias, en el que las trayectorias del sistema dinámico bajo múltiples
escenarios son consideradas de forma simultánea, y el problema de control óptimo bajo
incertidumbre es así transformado en un problema convencional que puede ser tratado
mediante métodos existentes en control óptimo. A continuación, empleamos este método
para resolver el problema de la planificación de vuelo robusta. La incertidumbre en el
viento y la probabilidad de ocurrencia de condiciones convectivas son modeladas medi-
ante el uso de previsiones de conjunto o ensemble, compuestas por múltiples predicciones
en lugar de una única previsión determinista. Este método puede ser empleado para
maximizar la eficiencia esperada de los planes de vuelo de acuerdo a la estructura de
costes de la aerolínea; además, la predictibilidad de la trayectoria y la exposición a la
convección pueden ser incorporadas como objetivos adicionales. El trade-off entre estos
objetivos puede ser evaluado mediante la metodología propuesta.

La segunda parte de la tesis presenta una solución para reconducir aviones en esce-
narios tormentosos en un horizonte táctico. La evolución de las células convectivas es
representada con un modelo estocástico basado en las proyecciones de Rapidly Devel-
oping Thunderstorms (RDT), un sistema determinista basado en imágenes de satélite.
Este modelo es empleado por un método de control óptimo numérico, basado en un
modelo de masa puntual en el que se modela la dinámica de viraje, con el objetivo de
maximizar la eficiencia y predictibilidad de la trayectoria en presencia de incertidumbre
sobre la evolución futura de las tormentas. Finalmente, el proceso de optimizatión es
inicializado por un método heurístico aleatorizado que genera múltiples puntos de inicio
para las iteraciones del optimizador. Esta combinación permite explorar y explotar el
espacio de trayectorias solución para proporcionar al piloto o al controlador un conjunto
de trayectorias propuestas, así como información útil sobre su coste y el riesgo asociado.

Los métodos propuestos son probados en escenarios de ejemplo basados en datos
reales, ilustrando las diferentes opciones disponibles de acuerdo a las prioridades del
planificador y demostrando que las soluciones descritas en esta tesis son adecuadas para
los problemas que se han formulado. De este modo, es posible enriquecer el proceso de
planificación de vuelo para incrementar la eficiencia y predictibilidad de las trayectorias
individuales, lo que contribuiría a mejoras en el rendimiento del sistema ATM.



Glossary

∆t Step size

Σw Covariance matrix of the motion of the storm

Ω Space of possible outcomes

β Sideslip angle

ζ Defect constraint

γ Flight path angle

λ Longitude

λ̄ Costate vector

µ Bank angle

µh Lagrange multipliers associated to the equality constraints

µL Lagrange multipliers associated to the lower inequality bounds

µU Lagrange multipliers associated to the upper inequality bounds

ν Lagrange multipliers associated to the boundary conditions

ξ Random parameters vector

ρ Air density

σw Amplitude of the random component of the motion of the storm

ψ Initial and final conditions function

ϕ Mayer (terminal cost) term

φ Latitude

χ True heading

χf Storm heading

ω Outcome

ωw Angular speed of the wind-fixed reference frame

E Expectation operator

I Identity matrix

P Probability measure
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R Real line

F σ-algebra of events

H Hamiltonian

H◦ Augmented Hamiltonian

I Set of forecast steps

J Set of possible storm phases

L Lagrangian (running cost) function

T Time interval of interest

A Aerodynamic force vector

D Drag vector

F Force vector

K Feedback policy

Kp Parametrized feedback policy

L Lift vector

T Thrust vector

Wt Multidimensional Wiener process

Xt State vector of a stochastic process

Y Lateral force vector

c Position of the center of the storm

f Dynamical function

g Inequality constraints vector

gL Lower bounds of the inequality constraints

gU Upper bounds of the inequality constraints

h Equality constraints vector

i First basis vector

j Second basis vector

k Third basis vector

p Parameters vector

uL Feedback law for the control vector

u Control vector
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uq Tracked part of the control vector

ur Untracked part of the control vector

v Airspeed vector

vs Storm speed vector

vw Wind vector

x State vector

xq Tracked part of the state vector

xr Untracked part of the state vector

y Vector of reference variables

z Algebraic variables vector

zq Tracked part of the algebraic vector

zr Untracked part of the algebraic vector

CR Convective Precipitation

D Drag force

L Lift force

LP Linear predictor

T Thrust force

TT Total Totals

Y Lateral force

CD Coefficient of drag

CL Coefficient of lift

CT Coefficient of thrust

EC Exposition to convection

Eu Tracking matrix associated to the control vector

Ex Tracking matrix associated to the state vector

Ez Tracking matrix associated to the algebraic variables

H Geopotential altitude

Hp Geopotential pressure altitude

I−i,j Indicator functions

J Cost functional
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M Mach number

P Pressure

Pk Shifted Legendre polynomial of degree k

RE Mean radius of the Earth

RM Ellipsoid radius of curvature in the meridian

RN Ellipsoid radius of curvature in the prime vertical

S Wetted wing surface

SW Wind-fixed reference system

T Temperature

V Value function

Wt 1-dimensional Wiener process

X Random variable

Zk Standard Gaussian variable

a Equatorial radius of the Earth (6378.137 km)

a0 Speed of sound

ak Weighting sequence coefficient of degree k

b Polar radius of the Earth (6356.752 km)

c Probability of convective conditions

d Control degrees of freedom

e◦ Eccentricity of the Earth

f Ellipsoidal flattening

fc Fuel consumption

g Gravitational acceleration

h Geodetic altitude

m Aircraft mass

nξ Dimension of the uncertain parameters vector

nΨ Number of boundary conditions

ng Number of inequality constraints

nh Number of equality constraints

nu Dimension of the control vector
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nx Dimension of the state space

nz Dimension of the vector of algebratic variables

q Dynamic pressure

p Storm probability field

rp Risk penalty

t Time variable

t0 Time at the start of the trajectory

tf Time at the end of the trajectory

v True airspeed

vCAS Calibrated airspeed

vg Ground speed

vf Forecasted storm speed

wx Wind speed, West-to-East component

wy Wind speed, South-to-North component

wi,j Statistical weights of the indicator functions

ui i-th control variable

xi i-th state variable

N Number of discrete scenarios
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2PBVP Two-Point Boundary Value Problem

ANS Air Navigation Services

ANSP Air Navigation Services Provider

APM Aircraft Performance Model

ATC Air Traffic Control

ATM Air Traffic Management

AUC Area Under Curve

BDT Business Developed Trajectory

BADA Base of Aircraft DAta

CAS Calibrated Airspeed

CCO Continuous Climb Operations

CDO Continuous Descent Operations

CI Cost Index

CIWS Corridor Integrated Weather System

CNS Communications, Navigation and Surveillance

CONUS Conterminous United States

CoSPA Consolidated Storm Prediction for Aviation

CWAM Convective Weather Avoidance Model

DASA Dynamic Airspeed Adjustment

DAE Differential-Algebraic Equation

DP Dispersion Penalty

DST Decision Support Tool

DROCT Discretized Robust Optimal Control Problem with Tracking

EAS Equivalent Airspeed

ECEF Earth-Centered, Earth-Fixed

ECMWF Europen Centre for Medium-Range Weather Forecasts

EEC Eurocontrol Experimental Centre
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EGM2008 Earth Gravitational Model 2008

EGM96 Earth Gravitational Model 1996

EPS Ensemble Prediction System
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CHAPTER

ONE

Introduction

1.1 Motivation

Air traffic in Europe and all over the world is expected to expand substantially in
the coming decades. According to Eurocontrol’s Challenges of Growth 2018 report [15],
the total amount of movements in European airspace under the most likely scenario is
expected to grow at an average rate of 2% per year between 2017 and 2040, leading to
a total increment of 50% in 2040 with respect to the current traffic levels. In the most
optimistic forecast, corresponding to strong economic performance in Europe and the
rest of the world, the total amount of flights could nearly double in this period.

It is, therefore, considered likely that the growth in air traffic will be high enough to
generate substantial capacity challenges for the whole European Air Traffic Management
(ATM) system in the future. On the ground, a substantial shortfall in airport capacity
is forecasted, with 1 to 4 million flights remaining unaccommodated in 2040 under
current airport expansion plans. At the network level, flow management regulations
are projected to become more frequent in order to deal with denser traffic, producing
around 5 times more flow management-originated delays during summers (6.2 minutes
per flight, on average, compared to 1.2 minutes per flight) and additional reactionary
delay. Looking beyond the average numbers, the Eurocontrol projections paint a starker
picture in the extremes, with the amount of flights delayed between 1 and 2 hours
increasing sevenfold, affecting ∼470,000 passengers (compared to 50,000 today) and
increasing flight cancellations.

In addition, the ATM community will have to face the numerous challenges posed
by climate change. In first place, environmental policies oriented towards mitigation
will put pressure on the aviation industry, which in 2010 accounted for 2.4% of climate
change-related emissions [16], to adopt technologies and operating procedures with re-
duced environmental impact. Nowadays, the main channels through which aviation
contributes to climate change are CO2 and NOx emissions related to fuel burn, but
condensation trails also play an important role [17]. Furthermore, aviation will need
to adapt to the shifting weather patterns brought along with climate change. Extreme
heat, precipitation or snow events, convective activity, wind and temperature changes
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2 Introduction

and sea-level rise have the potential to disrupt operations1 and shift passenger demand
between origin-destination markets. Finally, other environmental concerns, such as noise
near aerodromes, will likely continue to play a role in the future.

These critical issues are not alone within the set of priorities that have been put for-
ward by policymakers. Maintaining or improving the excellent safety record in aviation
in the face of increased traffic and new technologies (such as the incorporation of Un-
manned Aerial Systems (UAS) into the airspace) is a major concern. Additionally, the
trend towards an increasingly interconnected ATM infrastructure will require the pro-
vision of physical security and cybersecurity against traditional and emerging threats.
Finally, as an industry of key economic importance, improving the cost-effectiveness of
ATM services will remain a highly sought-after objective.

As these challenges began to be recognized, major policy initiatives were put in place
during the last decade in the most complex airspaces in the world. The European Union
created the Single European Sky ATM Research (SESAR) project to provide the tech-
nological solutions to overhaul and unify the European airspace. Similarly, the Federal
Aviation Authority (FAA) launched NextGen in the US with similar objectives; indeed,
an agreement was signed in 2010 to promote interoperability between the technologies
employed in both programs.

These initiatives aim to improve the performance of the ATM system in a wide
range of aspects. The 2015 edition of the European ATM Master Plan has established
high-level goals for 2035, which are summarized in Table 1.1. In order to attain these ob-
jectives, these programs develop, implement and leverage new technologies, concepts of
operations, regulations, and organizational paradigms in every part of the ATM system.

Area Relative improvement target

ANS cost-efficiency 50% reduction in unit costs

Operational efficiency
5-10% reduction in fuel burn
3-6% reduction in flight time

ATM capacity 3-fold increase
Environmental impact 10% reduction in emissions per flight
Safety Improvement by a factor of 3-4
Security No incidents leading to traffic disruption

Table 1.1: Single European Sky performance ambition for 2035.

1See European Aviation in 2040: Challenges of Growth (2018), “Annex 2: Adapting Aviation
to a Changing Climate” (https://www.eurocontrol.int/sites/default/files/publication/files/
challenges-of-growth-annex-2-01102018.pdf)

https://www.eurocontrol.int/sites/default/files/publication/files/challenges-of-growth-annex-2-01102018.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/challenges-of-growth-annex-2-01102018.pdf


1.1. Motivation 3

One of the core pillars of the future ATM system under the SESAR vision is the
Trajectory-Based Operations (TBO) concept. It represents a new, more flexible paradigm
in organizing and managing air traffic that seeks to enhance the efficiency and capacity
of the airspace while maintaining or increasing its safety. Within the TBO concept,
the 4D trajectory2 becomes the centerpiece of ATM operations, thanks to the introduc-
tion of technologies enabling precise navigation, accurate trajectory prediction and fast
data-sharing between the aircraft and the control centers.

In the future TBO concept, the planned trajectory will be elaborated in an iterative,
collaborative process. In first place, the airline calculates its preferred trajectories at
a long-term, strategic horizon, producing a Business Developed Trajectory (BDT). At
some point, months to days before the trajectory is executed, the BDT is shared with
the Air Navigation Services Provider (ANSP), turning into a Shared Business Trajec-
tory (SBT). The ANSPs employ this information to allocate resources to sectors and
determine route availability. The Network Manager is then able to compare the demand
from all SBTs to the capacity that the ANSPs can provide in order to assess network
imbalances and determine appropriate corrective measures by modifying, delaying or
approving all the SBTs for the time period under study. A negotiation with all the in-
volved stakeholders then leads to an agreed Reference Business Trajectory (RBT) to be
flown by the airline. Finally, the trajectory is flown according to the RBT and possibly
modified again in response to unplanned events.

The successful implementation of the TBO concept, and the attainment of the de-
sired improvements in Key Performance Areas, rests upon appropriate management of
uncertainty. As a complex social and technological system, ATM features a significant
amount of uncertainty, which impacts all areas where progress is sought. All systems,
organizations and people involved in ATM operations face uncertainty both directly
from external sources and indirectly from other parts of the ATM system, exhibiting an
interconnected pattern of influence that extends into multiple domains for any individ-
ual source of uncertainty. A flight being delayed on arrival because of meteorological
or equipment issues can influence airport resource management and create reactionary
delay in subsequent flights, creating deviations in sector demand with respect to the
planned capacity and contributing to the installment of regulations that affect seem-
ingly unrelated flights.

Therefore, it is essential to take uncertainty into account when designing the sys-
tems and concepts that will form the basis of the future ATM system. Specifically, it is
necessary to reduce, mitigate and deal with uncertainty in order to achieve the desired
improvements in capacity and efficiency without compromising safety. Furthermore, as
we move towards a more trajectory-centric paradigm, improving our understanding of

2Within the context of this work, “4D” refers to the 3 spatial dimensions plus time, i.e., a “4D
trajectory” represents not just a spatial path but also a temporal schedule for flying it.
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the sources of uncertainty at the trajectory level becomes critical for the processes of tra-
jectory prediction, planning, optimization, execution, monitoring and synchronization,
which are the pillars of the TBO concept. In particular, the ability to design trajecto-
ries that are efficient, but also more predictable, must be developed in order to reach
the targeted improvements in capacity, cost-efficiency and environmental impact. By
reducing the uncertainty in trajectory computation and generation, it would be possible
to reduce not just uncertainty at the individual trajectory level, but also downstream,
system-level effects, allowing for increased capacity.

At the trajectory level, uncertainty proceeds from many sources, which may directly
influence from a single flight to multiple interacting flights or even the entire network.
According to the taxonomy presented in [18, Chapter 4], these sources can be classified
in the following categories:

• Data uncertainty, arising from inexact or unavailable knowledge of relevant
variables, such as mass [19] or aircraft position, or models, such as aerodynamic
or engine performance [20].

• Equipment uncertainty, resulting from malfunction or failure of aircraft sys-
tems or ground systems, leading to deviations from normal modes of operation.
Sensors, actuators, CNS equipment, airport and ATC facilities may face issues
leading to abnormal behaviour.

• Weather uncertainty, produced by imperfect knowledge of current and future
values of key atmospheric variables and the locations of adverse meteorological
conditions.

• Operational uncertainty, generated by the lack of complete predictability of the
choices of decision-makers in charge of aircraft, airports and airspace operations.
Varying adherences to the flight plan or procedures [21], conflict resolution patterns
and choices of regulations can be grouped in this category.

One uncertain factor of particular interest is meteorology. Weather influences many
aspects of aviation, from aircraft design to air traffic planning, and it manifests itself
as a wide range of relevant phenomena at multiple spatiotemporal scales. Forecasting
weather is, additionally, an inherently uncertain endeavour: unavoidable inaccuracies
due to incomplete knowledge of the current state of the atmosphere, computational
limitations, and errors in the modeling of physical processes (particularly at the subgrid
scale) are amplified by the nonlinear chaotic dynamics of the atmosphere. From the point
of view of trajectory predictability, two channels that make a significant contribution to
uncertainty can be identified:
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• The magnitude and direction of wind has a direct impact on groundspeed. There-
fore, as the realized wind deviates from its forecasted value, the actual trajectory
will deviate in time from the prediction produced from the flight plan, introducing
unpredictability into the trajectory prediction process. This is not only relevant
for the airline, which faces costs from the uncertainty in fuel consumption and
arrival times, but also for airports and controllers, which will deal with aircraft
sooner or later than expected. As a result, the airspace is not used as efficiently
as it would be in an ideal deterministic situation, in order to accommodate these
deviations.

• Convective weather entails numerous hazards to aircraft, including strong turbu-
lence, wind shear, downbursts, icing, lightning or hail. Therefore, pilots generally
avoid regions of strong convection by deviating from the flight plan, if possible.
However, convection is particularly challenging to forecast, and thus it is not cur-
rently possible to plan these deviation routes at lead times beyond the minutes or
tens of minutes with solid assurances. As a consequence, at the timescale of hours
there is significant uncertainty in trajectories and traffic patterns whenever and
wherever convection is possible.

Thus, the spatiotemporal variability patterns of these phenomena creates interlinked
challenges at different stages of the flight planning and traffic planning processes. Indeed,
the estimation and modeling of uncertainty in individual aircraft trajectories due to wind
[22, 23, 24, 25, 26] and its impact on conflict detection and resolution [27, 28] represents
an active area of research; similarly, the uncertainty due to convection is being studied
at both the trajectory level [29, 30, 31] and the network level [32]. The interactions
between weather and other uncertainties are also being studied in recent works [33, 34].

Understanding the effect of uncertainty in trajectory prediction, while essential to
attain the desired improvements in ATM performance under the future concept of op-
erations, must be accompanied by the development of flight planning systems and al-
gorithms that take uncertainty into account. However, the kind of algorithms that are
currently employed in practice and in the literature to produce flight plans do not pay
enough attention to these uncertainties. In order to limit the scope of this thesis, we
will focus on the trajectory planning process at two scales:

• A planning horizon of 2 or 3 hours before departure where the flight plan associated
to the RBT is elaborated. At this stage, the uncertainty due to wind is significant,
and particularly so for the later stages of medium- and long-haul flights: for those
flight legs, the lead time of the weather forecast can climb to more than 10 or
12 hours. In addition, the error in arrival times due to wind accumulates over
the whole flight. Individual convective events cannot be forecasted at this stage;
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however, it is possible to identify regions where the conditions for convection are
met or where convection is more likely to develop.

• A tactical horizon that comprises scenarios where the flight is already taking place
and where the trajectory replanning scenarios last from around 15 minutes to 2
hours. In flights encountering convective events, the uncertainty proceeding from
convective developments becomes more important than the uncertainty due to
wind in relative terms, since the aircraft derives its own wind data from sensor
readings and the prediction error does not have enough time to accumulate to such
an extent that it rivals uncertainty in the route.

At the planning horizon, a key Numerical Weather Prediction (NWP) technique to
represent meteorological uncertainty is ensemble forecasting [35]. An Ensemble Predic-
tion System (EPS) does not produce a single deterministic forecast; instead, it generates
a set of multiple forecasts representing possible realizations of the future state of the
atmosphere. EPS forecasts are being employed in some ATM studies for purposes such
as developing algorithms for flow management under uncertainty [36] or estimating the
potential reduction of airspace capacity due to adverse weather [37]. Nevertheless, its use
is still not widespread among the wider ATM community, where deterministic forecasts
such as the Global Forecast System (GFS) are employed to a greater extent.

At the trajectory level, the interest in employing EPS forecasts to estimate the
uncertainty in flight time has been growing in recent years. Some authors [38, 39] have
studied the problem of employing filtering techniques to blend aircraft observations
with ensemble forecasts in order to produce more accurate estimations of the wind
field. In the SESAR project IMET, the information from probabilistic meteorological
forecasts was combined with a deterministic trajectory prediction tool in order to create
a probabilistic trajectory prediction (PTP) system [40]. It was shown that uncertainty
information about timeliness and fuel consumption could then be produced at multiple
look-ahead times for a given flight plan, and that this information could be employed
for decision-making in flight planning [41]. However, the question of how to explicitly
incorporate ensemble forecasts in a fully probabilistic flight planning framework was left
for future research and had not been addressed in other works.

At a tactical horizon, there is a greater recognition of the role of adverse weather
and convective developments in particular. As the current cockpit technology is not
enough to guarantee safe operations in heavy weather [42], multiple families of trajectory
planning algorithms have been published to address this problem; we will present a brief
survey of the corresponding literature in Section 2.7.4. However, the existing methods
for trajectory planning do not generally take both aircraft dynamics and the uncertainty
in the location and evolution of convective cells into into account, and those that do tend
to exhibit serious computational limitations, as discussed in Chapter 2. Thus, there is a
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need to develop flexible methods that address the problem of realistic trajectory planning
in convective environments under uncertainty with manageable computational costs.

The motivation of the research described in this thesis is, therefore, to enhance our
understanding of the impact of meteorological uncertainty in flight planning within the
incoming ATM paradigm and to contribute towards techniques that allow for uncertainty-
aware optimization of flight plans, facilitating the enhancement of predictability and the
understanding of the trade-offs involved.

The research interest on these themes has been increasing more recently. Indeed,
concurrently with the works that form the basis of this thesis, several authors have pub-
lished articles on related topics. In [43], a probabilistic trajectory prediction algorithm
based on meteorological probabilistic forecasts is built, based on analytical propagation
of the distribution aircraft mass and the flyover time; a similar approach is employed in
[44] to assess aircraft conflict severity. At a tactical horizon, the problem of trajectory
planning in uncertain convective environments is addressed in [6] with a scheme based
on reachability analysis and dynamic programming. Finally, moving from an individual
trajectory focus towards traffic-scale planning, the work in [5] presents an algorithm to
reduce forecasted conflicts in a region by slightly modifying the flight plans many hours
before execution using the information from ensemble forecasts.

1.2 Objectives

The main goal of the current dissertation is the development of algorithms and
techniques for flight planning at the planning horizon and the tactical horizon under un-
certain meteorological environments. To that end, the following intermediate objectives
have been pursued:

• Reviewing the existing literature on methods for aircraft trajectory optimization.

• Modeling the flight planning problem under uncertainty.

• Processing relevant meteorological data and modeling uncertainty and convective
activity.

• Developing dynamic optimization methods under uncertainty that allow us to
address the formulated flight planning problems.

• Applying these methods to build a numerical tool for robust flight planning.

• Studying test scenarios to gain insight into the available options for improving
predictability through flight planning.
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1.3 Contributions

The original contributions presented in this thesis include:

1. In first place, we introduce a numerical framework for the solution of general
nonlinear optimal control problems under uncertainty. It is based on an ensemble
trajectory scheme, where the trajectories of the system under multiple scenarios
are considered simultaneously within a single augmented dynamical system. The
framework we propose generalizes previous, more limited concepts proposed in the
literature, which are based on an “open-loop” concept that is not adequate for
a wide range of dynamical systems. It transforms an uncertain optimal control
problem into a conventional optimal control problem, with a size proportional to
both the dimension of the state space and the number of uncertainty samples, that
can be then solved by standard, well-studied direct methods in optimal control.

2. At the planning horizon, we propose a robust flight plan optimization methodology
based on contribution #1, which can be employed to produce flight plans under
uncertainty at the planning horizon. It relies on EPS forecasts for the modeling of
the uncertainty in the wind and regions of potential convective activity. It can be
used to optimize flight plans for maximum average efficiency according to the cost
structure of the airline, but it also allows for the consideration of predictability
and exposure to convection as additional objectives; the inherent tradeoff between
these objectives can be assessed with this methodology. An analysis of how the
flight plans are computed by the proposed method depending on the priorities of
the user is offered.

3. Finally, at the tactical horizon, we present a solution for the tactical rerouting of
aircraft in uncertain convective weather scenarios (again based on direct methods
for optimal control). It combines three different components to propose a set of
optimized avoidance trajectories: a stochastic model of the motion of the storms
based on a deterministic extrapolation-based nowcast, a numerical optimal control
framework for optimizing for efficiency and predictability in the face of convection,
and a randomized heuristic procedure to generate multiple starting points for the
optimization. The resulting method is able to explore as well as exploit the space
of solution trajectories and provide the pilot or the air traffic controller with a set
of different proposed avoidance trajectories, as well as the differences in expected
cost and risk between them.
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1.4 Methods

We now proceed to provide an overview of the main pillars of the work presented
in this thesis. More detailed descriptions will be offered in Chapter 2, in the case of
optimal control and trajectory optimization, and in Chapter 3, for meteorological data
sources.

1.4.1 Ensemble Forecasts

NWP faces numerous uncertainties, from incomplete or imprecise knowledge of the
state of the atmosphere at the time of the forecast to model uncertainties and compu-
tational limitations [45]. Because these uncertainties are propagated through nonlinear
and chaotic atmospheric dynamics and error compounds with the lead time, simple sta-
tistical characterization is inadequate for the representation of the forecast uncertainty.
Ensemble forecasting produces instead probabilistic forecasts by running a certain num-
ber (generally between 10 and 100) of different simulations or “members”, each one
with different initial conditions, models or parameters. Ensemble forecasting has been
one the drivers behind the improvement of weather prediction techniques over the last
decades [46].

Several methods are used for producing the different members of an EPS forecast
(see Figure 1.1). The most important include ensemble data assimilation, where the
initial conditions are perturbed according to their uncertainty; singular and breeding
vectors, where the perturbation is chosen to excite the fastest-growing dynamical insta-
bilities; stochastic parametrizations, where the parameters of models of the atmospheric
processes at subgrid spatiotemporal scales are perturbed; and multiphysics or multi-
model schemes, where the members are drawn from the output from different models.
Each NWP center maintains an Ensemble Prediction System that implements a different
combination of these techniques. We note that these methods aim to be “economic” by
producing a good representation of the uncertainty from a limited number of simulations,
since each one is computationally expensive.

There are three main classes of EPS. In decreasing scope and maturity and increasing
resolution, they are global scale EPS, regional scale (Limited Area Model or LAM)
EPS and convective scale EPS. For the purposes of considering wind uncertainty in
medium-haul flights, both global and LAM EPS can be used. However, since LAMs
are usually produced in order to forecast surface weather of a specific region (such as
Europe or North America), their oceanic coverage is limited. Therefore, in this work
we will rely on global EPS, which can be used for intercontinental flights. Historical
global EPS forecasts from major NWP centres around the world can be found at the
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Initial conditions Final state

a) Deterministic forecast b) Ensemble forecast with 
initial conditions perturbations

c) Ensemble forecast with
parameter perturbations

d) Ensemble forecast with 
multiple perturbation methods

Figure 1.1: Conceptual representation of the generation of EPS members.

TIGGE dataset3, hosted at the Europen Centre for Medium-Range Weather Forecasts
(ECMWF) website. Output from European LAM models is similarly compiled in the
TIGGE LAM dataset.

Ensemble forecasts provide us with useful uncertainty information at a planning
horizon. In first place, the estimated uncertainty in relevant variables for aircraft per-
formance, such as wind, temperature and geopotential at barometric altitude, can be
extracted from ensemble forecasts. Additionally, other variables can be employed to de-
termine the likelihood that the necessary conditions for convection are present at each
time and place. We will cover this process in Chapter 3.

1.4.2 Rapidly Developing Thunderstorms

At a planning horizon, it is hard to forecast the onset and location of convective
activity with precision, creating numerous challenges for flight dispatchers, air traffic
controllers and flow management authorities. Within the regions where conditions that

3http://apps.ecmwf.int/datasets/data/tigge/

http://apps.ecmwf.int/datasets/data/tigge/
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allow for convective development are forecasted, it is not easy to predict the timing
and location of convective initiation. The characteristic sizes and lifespans of convective
phenomena are small compared with the spatiotemporal resolution of medium-range
NWP models, and the chaoticity of the atmospheric dynamics compounds the challenge.
As a consequence, both thunderstorm weather forecasting and avoidance take place at
shorter timescales, in the form of deterministic nowcasting4 based on extrapolation of
radar echoes or satellite imagery. This technique offers better accuracy than NWP in
timescales below 1 or 2 hours.

In this work, we will employ the satellite-based Rapid Developing Thunderstorms
(RDT) product as a data source for convective nowcasts. This nowcasting system takes
as input data from multiple instruments aboard Meteosat Second Generation satellites
and uses it to identify the locations and shapes of cloud formations, discriminate the
convective cells, and forecast their motion. The resulting RDT output then provides the
generated information in an object-oriented fashion, which can be used for trajectory
planning; however, the forecast of the evolution of the storms is deterministic and the
forecast error is therefore not represented. A more detailed description is offered in
Section 3.3.2; we will enrich this nowcast with a probabilistic model in Chapter 7.

1.4.3 Numerical Optimal Control

A wide range of algorithms have been historically employed for the purposes of flight
planning, including geometric, heuristic and metaheuristic methods, path-planning algo-
rithms, dynamic programming approaches and optimal control techniques. As interest in
4D trajectory paradigms began to grow and computational power increased, researchers
started to pay more attention to optimization techniques targeting the complete tra-
jectory optimization problem [47]. Optimal control represents a natural framework for
this purpose, and multiple classes of numerical methods can be employed for the prac-
tical solution of optimal control problems. In particular, direct methods represent a
computationally attractive solution for aircraft trajectory optimization problems, where
practical restrictions make indirect methods inconvenient and high-dimensional state
spaces make dynamic programming computationally expensive.

However, while direct methods are well-developed for deterministic nonlinear optimal
control problems, they are not as mature for problems with uncertainty. Some concepts,
based on the aggregation of multiple deterministic trajectories (each one representing
a realization of the uncertain parameters, corresponding to quadrature points in an
uncertainty quantification rule) have been put forward to solve the uncertain problem

4Within a meteorological context, “nowcasting” refers to forecasting for short ranges (6 hours at most,
according to the World Meteorological Organization (WMO)) at the mesoscale (weather phenomena of
sizes between a few kilometers and a few hundred kilometers), and relying more on extrapolation of
current sensor data (radar echoes, mainly) than on NWP techniques.
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[48, 49, 50, 51]. In the mentioned works, a single optimal control sequence is obtained,
which results in different state trajectories depending on the realization of the uncertain
parameters. Because all the state variables are then uncertain at the final time, exact
boundary conditions and partial state trajectories cannot be applied, thus rendering this
approach inadequate for flight planning. Therefore, this research gap will be addressed
in this thesis in order to achieve its objectives.

1.5 Outline of the Thesis

This document is structured as follows:

• Chapter 1, the current chapter, describes the motivation of the thesis, as well as
the specific objectives and contributions.

• Chapter 2 provides further background information on the trajectory optimiza-
tion methods employed in the thesis, briefly reviewing the literature on dynamic
optimization and flight planning.

• Chapter 3 introduces the physical models that will be employed throughout the
remainder of the thesis, covering both the aircraft dynamics and the atmospheric
behaviour.

• Chapter 4 develops a robust optimal control methodology for general nonlinear
problems.

• Chapter 5 employs the framework introduced in Chapter 2 to address the robust
flight planning problem in the presence of uncertain winds. A test scenario is
solved and a discussion of the results is offered.

• Chapter 6 extends the methodology of Chapter 5 to include convection at the
planning horizon and discusses the results from a flight planning scenario.

• Chapter 7 describes a probabilistic model for the evolution of convective cells based
on the deterministic RDT nowcasts.

• Chapter 8 describes an optimal control-based method to address the problem of
tactical trajectory optimization in the presence of uncertain convective cells.

• Chapter 9 sums up the implications of the work, as well as discussing potential
future avenues of research.

Figure 1.2 illustrates the structure of this dissertation, highlighting the data sources,
algorithms and contributions of the thesis and associating them to the corresponding
chapters.
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CHAPTER

TWO

Trajectory Optimization

The goal of flight planning is to produce a feasible sequence of aircraft operations that
best meets the objectives of the flight planner while fulfilling practical constraints. Thus,
from the mathematical point of view, a 4D flight planning problem represents a dynamic
optimization problem, an optimization problem with a dynamical system at its core. A
large number of engineering problems can be framed as dynamic optimization problems,
and thus a wide range of solution methods has been studied. These methods differ not
only on their computational performance, features and approach (how they solve dy-
namic optimization problems), but also in the practical concept that corresponds to the
solution (what kind of practical problem is being solved). In this chapter, we aim to offer
a brief overview of the literature on deterministic and stochastic dynamic optimization;
the focus will be on aerospace applications and, in particular, flight planning.

This chapter is divided in the following sections:

• Section 2.1 describes the main paradigms in dynamic optimization.

• Section 2.2 introduces the main families of dynamic optimization methods em-
ployed in flight planning.

• Section 2.3 introduces the formulation of the optimal control problem.

• Section 2.4 reviews the existing methodologies for the solution of deterministic
optimal control problems.

• Section 2.5 introduces the mathematical characterization of uncertainty and its
integration into differential equations.

• Section 2.6 discusses the solution of optimal control problems under uncertainty.

• Section 2.7 reviews relevant work in the field of aircraft trajectory optimization
employing the surveyed methods.

15
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2.1 Dynamic Optimization Paradigms

Practical problems in dynamic optimization face wildly different requirements in
different contexts. Some of them have particularly important implications in terms of
the choice of methods, such as:

• When can we change the control input of the system?

• What information about the state of the system is available and when?

• How much time can we employ for expensive computations, both before and during
operation?

• When do we know the objectives and constraints?

In a fully deterministic context, where the evolution of the system under considera-
tion can be computed exactly for any control input, one might think that these issues
are not critical. After all, if a satisfactory solution can be found before the start of the
operation of the system, the blind application of the computed control should be enough
to lead the system in the desired form.

However, even if uncertainty is not explicitly considered in theory, it is always present
in practice, where no model is exact, no variable can be measured with arbitrary precision
and no actuator can be activated with arbitrary precision and frequency. Thus, unless
the impact of these factors is minimal, it is not enough to obtain an optimal control
sequence and apply it; a non-trivial scheme is needed to deal with deviations. We
can classify the operational paradigms1 one might want to consider for this purpose in
two broad families: pre-computed control laws and receding horizon control. Figure 2.1
illustrates these families.

2.1.1 Pre-computed Control Laws

In this concept the expensive optimization-related computations are completed offline
before the system starts to operate. A set of functions or laws that can be evaluated in
a relatively fast manner is then obtained and transferred to the controller of the system.
Then, once the system starts to operate, these functions or laws are employed by the
automatic controller to determine the control inputs at each point in time.

This approach is more suitable when the optimization objective and the dynamical
system is known a priori and the computational capacities of the on-board controller

1Note that, due to the scope of this thesis, we do not consider complications such as adversarial
or game-theoretic contexts (i.e. where an intelligent decision-maker or system is working against the
objectives of the planner), non-fully-observable state spaces or distributed control problems.
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Figure 2.1: Paradigms in dynamic optimization.

are more limited or require certified code. One clear example of this approach are
space exploration missions: the trajectory is designed before launch, and followed by
the spacecraft afterwards (with a few corrections by the ground team).

Depending on the form of the computed control laws, several subtypes can be iden-
tified:

• In an open loop approach, the output of the optimization algorithm is a control
sequence that, when applied, produces the optimal trajectory of the system. It
represents the least robust concept, as any deviation from the nominal trajectory
will be amplified sooner or later and thus a tight control of the uncertainty is
required in order to avoid large errors.

• In a tracking paradigm, the trajectory of the state space (or a subset of the state
variables) is obtained from the optimization process. Then, a lower-level, higher
frequency and possibly non-optimizing controller is charged with the task of op-
erating the controls in order to lead the system through the desired trajectory.
This concept represents a more robust approach, as the disturbances on some of
the states can be minimized or eliminated; however, in a high-uncertainty context,
these disturbances may be redirected to the untracked states, which might not be
desirable.

• In a closed loop or policy-based paradigm, the output of the optimization algorithm
is a function that maps the state space (or the space of observable variables) and
the time interval to a control action. At each point in time, the controller uses
the measurements from the sensors to feed the control law or policy and compute
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the corresponding controls. It represents the most general and flexible paradigm,
and it achieves higher performance, but it might demand more computational
resources (as the entirety of the state-action space must be explored, or at least
a large region) and does not “shield” state variables of interest from uncertainty
unless they are explicitly targeted through the objective function or policy shape.

In an ATM context, the most interesting approach for trajectory planning is the
tracking one. Closely following spatial routes and temporal schedules is desirable in
order to forecast conflicts, traffic and airport resource utilization in advance; on the
other side, the existence of uncertainty makes open-loop solutions impractical. It is
conceivable that, as we move towards higher levels of automation in the future, policy-
based paradigms will replace current operational procedures; indeed, research activity
under this framework is quickly growing. Nevertheless, while we will offer some thoughts
on closed-loop approaches in Section 4.6, this thesis will mainly focus on developing
methods under the tracking paradigm.

2.1.2 Receding Horizon Control

Alternatively, the on-board systems might be expected to optimize or re-optimize
the trajectory and generate the optimized controls online. This might be interesting
for multiple reasons: the objective might not be known a priori or might be shifting;
the knowledge of the system or the context is limited or nonexistant in advance; the
computational resources of the system might be large; the optimization algorithm is
reliably fast (for example, if the system is linear and the optimization method only
requires a fixed number of easy matrix operations). Thus, real-time optimization is
carried out in this concept. It is usually performed through a receding horizon strategy:
only a limited “window” of future time segments is considered to compute the values of
the controls for the current time segment; then, the control is applied, the look-ahead
window is shifted forward in time and the computations are performed again.

While this approach can be employed for certain airport or flight operations (for
example, for adjusting the arrival time to a waypoint or runway), it is unsuitable for
general flight planning under the current operational paradigm for the same reasons
exposed previously.
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2.2 Algorithmic Trajectory Planning

The second question that must be addressed (often in conjunction with paradigm
selection) is how the operation of the system will be optimized, i.e., what kind of mathe-
matical technique will be employed in order to produce a solution. Figure 2.2 illustrates
the most relevant families of methods; we now proceed to overview their main features.

Dynamic Optimization Methods
for Flight Planning

Heuristic and/or 
geometric methods

Optimal Control
Dynamic 

Programming

Direct methods

Indirect methods

HJB methods

Heuristics

Graph-based
path planning

Meta-heuristic
 methods

Combinatorial
optimization

Figure 2.2: Methods in trajectory optimization.

2.2.1 Heuristic and Geometric Methods

These methods represent the simplest kind of flight planning methods, producing
tracking-style control laws. An optimization principle is not explicitly employed and
flight dynamics are not modeled; instead, heuristic or “greedy” decision rules that are
likely to produce a “good enough” result are used. Thus, these methods are fast and
reliable, even if they do not produce the best flight plans and trajectories. Most of
these heuristics rely on geometric considerations, especially for deconfliction and weather
avoidance scenarios.

2.2.2 Dynamic Programming

Dynamic programming produces policy-like control laws. In dynamic programming,
the dynamical system is modeled in discrete time. A value function, mapping the state
space and the time domain into a scalar field, is computed in backwards recursive fashion
from the last time node to the first; then, the optimal action at each stage can be
computed by evaluating the value function of subsequent states and aggregating any
running costs. The output of a dynamic programming algorithm is then a globally
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optimal policy. Its main drawback is the high computational cost for systems with more
than a few states: it exhibits the “curse of dimensionality”, an exponential increase in
the required computational resources with the dimension of the state.

In order to avoid this unfavourable computational scaling, some techniques have
developed and grouped under the banner of approximate dynamic programming [52,
53]. These methods approximate one of several of the components of the DP problem.
Some of these techniques involve approximating the cost function, discretizing the value
function or the policy, limiting the lookahead horizon, aggregating or discretizing states
or outcomes may be aggregated or discretized, or reducing the dimensionality of the
problem.

2.2.3 Path-Planning Algorithms

Path-planning methods are employed mainly to optimize the route or the horizontal
profile of the trajectory; thus, they represent a tracking concept. In these methods, the
space is represented as a graph and a path is represented as a sequence of connected
nodes and links of this graph that the aircraft will traverse. Each link has an associated
cost (for example, the geographical distance between the nodes) and the goal is to find
the least-cost traversal path from the beginning to the end node.

Historically, the most popular algorithm is Dijkstra’s shortest path algorithm [54],
which employs an approach similar in spirit to dynamic programming. While dynamic
programming principles are still the basis of most subsequent path-planning algorithms,
the incorporation of heuristics has led to the development of faster algorithms such as A?

[55] or D? [56, 57] over the years. These algorithms are useful for structured airspaces,
where route-finding problems translate naturally to shortest path problems; however, it
is hard to consider time-varying costs or additional performance characteristicts (such
as fuel burn or varying airspeed profiles) within them.

In non-structured airspaces, it is possible to discretize the continuous position space
into a discrete graph and employ the aforementioned algorithms to solve the resulting
problem. However, this procedure leads to suboptimal solutions, since the optimal tra-
jectory cannot be arbitrarily approximated, in general, by a sequence of segments from
a regular grid. In order to address this difficulty, “any-angle path-planning” algorithms
based on A?-like methods have been proposed [58]. In particular, an important devel-
opment from the robotics field are randomized sampling-based planning methods [59]
and, in particular, methods based on Rapidly-exploring random trees (RRT). The intro-
duction of the seminal RRT? algorithm [60] led soon afterwards to the development of
RRT? variants seeking to address its shortcomings and incorporate additional features
[61].
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2.2.4 Combinatorial Optimization

When framing a flight planning problem as a shortest path problem on a graph,
an alternative approach to conventional path planning algorithms is to formulate an
equivalent mixed-integer optimization problem. The increase in computational capacity
and solver performance over the last decades has increased the appeal of these methods.
In this setting, the decision variables represent the chosen graph edges, while the con-
tinuity of the path can be ensured by a linear constraint. Compared to path planning
methods, this approach features similar advantages and drawbacks, with the addition of
a higher computational complexity; in exchange, certain advanced features such as the
consideration of uncertainty can be incorporated in a more natural fashion [62].

2.2.5 Metaheuristic Methods

If the flight plan is represented as a series of discrete and continuous variables and
a fast trajectory prediction algorithm that simulates the flight plan is available, generic
gradient-free optimization algorithms can be employed to optimize it. One possible
choice to solve the resulting problem are metaheuristic optimization algorithms, which
apply combinations of randomized heuristic procedures (often inspired by natural and
evolutive processes) in an iterative fashion in order to improve the candidate solution
or set of solutions.

Many algorithms have been put forward within this field. Among them, some of the
most popular are simulated annealing [63], particle swarm optimization [64, 65], evolu-
tion strategies [66], differential evolution [67], genetic algorithms [68], variable neighbor-
hood search [69] and GRASP [70].

While these procedures often do not guarantee convergence to an optimal solution,
may require more computational time than alternative methods and often struggle to
incorporate constraints, they have several attractive features. Metaheuristic algorithms
perform both exploration and exploitation of the search space, making them appropriate
for global optimization in problems that may have multiple local minima. They do not
require gradient information, and thus they can be integrated with already-existing
trajectory prediction software. They are easy to implement, and it is frequenty possible
to parallelize them. Finally, some of them allow for multiobjective optimization. In
consequence, some trajectory planning research has focused on these algorithms, as we
discuss in Section 2.7.
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2.2.6 Optimal Control

Optimal control methods work in a continuous-time framework and take into account
the complete dynamics of the system. Multiple families of numerical methods, covered
in Section 2.4 can be employed, with different properties. If the controls from the
solution are implemented, optimal control represents an open-loop paradigm; if some
states from the solution are extracted and set as reference trajectories for a lower-level
controller, optimal control represents a tracking scheme. Finally, optimal control can
also be implemented in a receding horizon control fashion, often under the label of
“Model-Predictive Control” (MPC).

In this thesis, the focus will be on the optimal control paradigm. We will now proceed
to provide a short introduction to this field.

2.3 Deterministic Optimal Control

2.3.1 Deterministic Differential Equations

We start from the simplest deterministic differential equation, an uncontrolled Or-
dinary Differential Equation (ODE) describing a system that evolves or operates on a
time interval of interest T = [t0, tf ]. We assume that the system can be described by
an nx-dimensional vector of state variables x : T → Rnx :

x(t) =


x1(t)
...

xnx(t)

 (2.1)

In an ODE, the derivative of the state vector at any point in the time interval is
given by the dynamical function f : Rnx × R→ Rnx :

ẋ(t) = f(x(t), t) (2.2)

For clarity of notation, we will make the dependency on time implicit:

ẋ = f(x, t) (2.3)

Certain systems described by an ODE can be influenced by the actions of a user,
operator, or automatic control system. This action is described by a control vector of
dimension u : T → Rnu :

u(t) =


u1(t)
...

unx(t)

 ∈ Rnu (2.4)
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and the controlled ODE is then described by a dynamic function f : Rnx×Rnu×R→
Rnx :

ẋ = f(x,u, t) (2.5)

In the systems that we are interested in, we often face multiple constraints on both
state space and controls. We will distinguish between equality constraints h : Rnx ×
Rnu × R→ Rnh and inequality constraints g : Rnx × Rnu × R→ Rng :

gL ≤ g(x,u, t) ≤ gU (2.6)

h(x,u, t) = 0 (2.7)

where the equality and inequality signs are interpreted in an element-wise fashion.
Equality constraints are often paired in optimal control with algebraic variables z :
T → Rnz (with the number of algebraic variables being at most equal to the number of
equality constraints, i.e., nz ≤ nh). These variables do not follow a differential equation;
instead, their value is set implicitly by the algebraic constraints h. With those additions,
the ODE becomes a constrained Differential-Algebraic Equation (DAE):

ẋ = f(x, z,u, t) (2.8)

h(x, z,u, t) = 0 (2.9)

gL ≤ g(x, z,u, t) ≤ gU (2.10)

A DAE is more complex to integrate than an ODE; however, they can be dealt with
in a very similar manner through direct methods for numerical optimal control. In this
work, we will deal with both ODE and DAE models.

2.3.2 Formulation of the Optimal Control Problem

At the conceptual level, the field of control engineering seeks to find a way to generate
a control sequence u(t) (or a closed-loop law/policy uL(x, t) that generates the sequence)
such that the resulting trajectory of the system has properties that are desirable for the
designer; depending on the type of problem, these properties may include stability, ro-
bustness, efficiency, tracking performance or other considerations. In an optimal control
setting, the goal is to minimize a cost functional (defined in Equation (2.11)), while
fulfilling the constraints and initial and final conditions.

J(x,u, tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0

L(x,u, t)dt (2.11)

Here, ϕ is a “terminal cost” term2 and L is called the Lagrangian term3. This form
2In a general formulation, the Mayer term can also depend on the initial state and time; this is

infrequent in practice but certainly possible: consider, for example, the problem of finding an optimal
launch time for a space vehicle

3Note that the dependency in time is again implicit for compactness, i.e. L(x,u, t) = L(x(t),u(t), t)
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of the cost functional is known as the Bolza form of the optimal control. If ϕ = 0, then
the problem is said to be in Lagrange form, and if L = 0 the problem is said to be in
Mayer form. The terminal cost term represents a cost associated with the final state,
while the Lagrange term represents a cost accumulated along the state trajectory.

We denote by x∗ and u∗ the state and controls along the optimal trajectory. Opti-
mality can be defined in a global (J(x∗,u∗, t∗f ) ≤ J(x,u, tf ) for all feasible trajectories
(x, u)) or in a local sense (J(x∗,u∗, t∗f ) ≤ J(x,u, tf ) for all neighbouring trajecto-
ries). From the theoretical point of view, the two most relevant mathematical results
characterize optimal trajectories through either the necessary conditions for optimal-
ity (Pontryagin’s Minimum Principle) or the sufficient conditions for optimality (the
Hamilton-Jacobi-Bellman equation).

2.3.3 Pontryagin’s Minimum Principle

Pontryagin’s Minimum principle (PMP) [71] (alternatively, Pontryagin’s Maximum
Principle) characterizes the necessary conditions for a trajectory to be an optimum of
the OCP. Consider the unconstrained problem:

min J(x,u, t0, tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0

L(x,u, t)dt (2.12)

subject to:

ẋ(t) = f(x,u, t) (dynamic equations) (2.13)

ψ(x(t0),x(tf ), t0, tf ) = 0 (initial and final conditions) (2.14)

We define the adjoint variables or costates λ̄(t) : T → Rnx and the Lagrange multipli-
ers ν ∈ Rnψ associated to the initial and final conditions. We also define the Hamiltonian
of the problem as :

H(x, λ̄,u, t) = L(x,u, t) + λ̄T f(x,u, t) (2.15)

The PMP now lists the necessary conditions for a trajectory to be an extremal of
the cost funcional:

Theorem 2.1 (Pontryagin’s Minimum Principle). Let (u∗(t), x∗(t)) be an optimal
trajectory for the problem introduced above. Then, there exist functions u(t), λ̄∗(t)
such that:

• The states and costates obey the Euler-Lagrange equations:

dx∗

dt
= ∂H

∂λ̄
(2.16)

dλ̄∗

dt
= −∂H

∂x (2.17)
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• The control minimizes the instantaneous Hamiltonian

H(t,x∗,u∗, λ̄∗) = min
u(t)∈Rnu

H(x∗,u, t, λ̄∗) ∀t ∈ [t0, tf ] ⊂ T (2.18)

• The final costates satisfy the transversality conditions:

λ̄(tf ) =
[
∂ϕ

∂x + νT
∂ψ

∂x

]
t=tf

(2.19)

• For problems where the final time tf is not fixed, the Hamiltonian at the final time
also verifies:(

∂φ

∂t
+ H

) ∣∣∣∣∣
t=tf

= 0 (2.20)

These equations, along with the initial and final conditions, define a Two-Point
Boundary Value Problem (2PBVP). The dynamics of the states and costates are coupled;
however, where the states are fixed by an initial or final condition, the corresponding
transversality condition for the corresponding costate becomes uninformative (as the
corresponding Lagrange multiplier νj becomes non-zero). Since none of the endpoints of
the temporal domain feature a complete set of boundary conditions, it is not possible to
solve this problem by simply integrating forwards or backwards, as is usually done for
the solution of initial value problem. Therefore, solving a 2PBVP requires a different
approach; Section 2.4.2 discusses numerical methods for the solution of this problem.

Constrained problems

The addition of equality constraints (Equation 2.21) and inequality constraints (Equa-
tion 2.22) results in an increase in complexity, but similar principles can be applied.

h(x,u, t) = 0 (equality constraints) (2.21)

gL ≤ g(x,u, t) = 0 ≤ gU (inequality constraints) (2.22)

We define the time-dependent multipliers associated to the path constraints µU :
T → Rng , µL : T → Rng and µh : T → Rnh , and the augmented Hamiltonian as follows
(we have omitted the dependencies on x, λ̄,u, t for clarity):

H◦ = L + λ̄T f + µTL (g− gL) + µTU (gU − g) + µThh (2.23)

The PMP conditions are now valid with H◦ taking the role of H◦ and the Lagrange
multipliers fulfilling the usual complementary slackness conditions at every t:
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µTL (g− gL) = 0 (2.24)

µTU (gU − g) = 0 (2.25)

µTL ≤ 0 (2.26)

µTU ≤ 0 (2.27)

However, inequality conditions generate additional issues, because they may be bind-
ing or not at different points in the trajectory. At certain times (called junction points),
they may switch from non-binding to binding, potentially creating discontinuities in the
trajectory of the control and the costates. We refer the reader to [72] for a detailed survey
of the theory of optimal control with state and mixed state and control constraints.

2.3.4 The Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation describes the sufficient conditions for
the trajectory to be an optimum. Consider again the unconstrained problem:

min J(x,u, tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0

L(x,u, t)dt (2.28)

subject to:

ẋ(t) = f(x,u, t) (dynamic equations) (2.29)

ψ(x(t0),x(tf ), t0, tf ) = 0 (initial and final conditions) (2.30)

We define the value function V : Rnx × R→ R as:

V (x, t) = min
u∈Rnu

{
ϕ(x(tf ), tf ) +

∫ tf

t

L(x,u, t)dt
}

(2.31)

Theorem 2.2 (Hamilton-Jacobi-Bellman). The optimal control is given by the rela-
tionship:

u∗(x, t) = arg min
u

(
L(x,u, t) +∇xV (x, t)T f(x,u, t)

)
(2.32)

where the value function satisfies the Hamilton-Jacobi-Bellman PDE:

−∂V
∂t

(x, t) = min
u

{
L(x,u, t) +∇xV (x, t)T f(x,u, t)

}
(2.33)

with the boundary condition:

V (x(tf ), tf ) = ϕ(x(tf ), tf ) (2.34)

The Hamilton-Jacobi-Bellman PDE represents, thus, the continuous-time equivalent
of the dynamic programming principle. It produces a control policy that generates
the globally optimal trajectory. However, from the practical point of view, there are
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multiple challenges involved in the numerical solution of the HJB PDE. The appearance
of a minimum operator in the PDE and the lack of smoothness of the solutions for certain
problems are some of them, but the most salient one is the curse of dimensionality: a
state space discretization in a standard tensor-product grid with N points per dimension
is composed by Nnx points, which is a prohibitive cost for system where the dimension
of the state space is not low.

2.4 Numerical Methods in Deterministic Optimal Con-
trol

There are three main families of numerical methods in deterministic optimal control:
indirect methods, direct methods and dynamic programming (or HJB-based methods).
In this section, we proceed to review their basis, features and practical issues.

2.4.1 HJB methods

As mentioned in Section 2.3.4, one approach that might be employed to obtain the
solution of the optimal control problem in a policy-based form is to numerically solve
the Hamilton-Jacobi-Bellman PDE. In practice, a conceptually analogous approach that
is more often employed in practice is the transformation of the continuous-time system
into a discrete-time system, which then generates a dynamic programming problem.
In both approaches, the state space is discretized and the value function is obtained
by backwards recursion in time (in analogous form as a numerical method for PDEs
marching forward in time). There are three main advantages of these methods:

• Ability to find global optima (as all the state space is exhaustively searched).

• Obtention of a closed-loop control rule or policy instead of an open-loop control
trajectory.

• Natural extension to uncertain and stochastic problems.

As discussed previously, the main drawback of dynamic programming is its compu-
tational cost: the size of the grid required scales exponentially with the dimension of
the state space (“curse of dimensionality”). Therefore, memory and operation require-
ments of standard dynamic programming grow very quickly with the number of state
variable and become impractical at 4 or even 3 state variables. The direct application of
dynamic programming is therefore limited in practice to problems with low state-space
dimensionality.
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For specific versions of the HJB equation, efficient methods are sometimes available.
For example, Ordered upwind methods [73] can solve certain problems in an efficient,
one-pass manner that is similar to Dijkstra’s algorithm.

2.4.2 Indirect Methods

Indirect methods solve the Hamiltonian 2PBVP by a numerical scheme. In an indi-
rect method, the necessary conditions for optimality are derived through the application
of Pontryagin’s Minimum Principle (“first optimize”) and then the 2PBVP is numeri-
cally solved (“then discretize”). As discussed in Section 2.3.3, a 2PBVP is substantially
more challenging than an initial value problem, as only part of the boundary conditions
for the states and costates are given at the initial time and the remaining ones are given
at the final time.

The main techniques in indirect methods are indirect single shooting and indirect
multiple shooting [74]. Indirect single shooting is an iterative technique that involves
integrating the trajectory forward for an initial guess of the initial costates and then
using the gradient of the final states and costates with respect to the initial values to
refine them in a manner such that the final values are closer to the target values in each
consecutive iteration. Multiple shooting subdivides the time interval into subintervals
and then uses an initial guess for the initial values in each subinterval to integrate the
ODE or DAE system, with each iteration seeking to reduce the distance between the
final, computed values in each subinterval and the initial values of the next subinterval
(as well as the final values in the last subinterval) with each iteration.

Indirect methods have considerable drawbacks [75] for certain application:

• The optimality conditions must be derived, which requires nontrivial amounts of
work and expertise with optimal control methods. In particular, any change in
the model of the system or the problem formulation requires re-deriving these
conditions from scratch.

• The “switching structure” (the sequence of active path constraints and regular,
singular and saturated control arcs) must be derived or known a priori, which may
be a hard task for complex problems.

• An initial guess for the trajectory must be provided. While this is common to
most numerical methods, indirect methods also require an initial guess for the
costates. Since there are usually no available “intuitive” values for the costates
(while state variables can usually be initialized at an actual trajectory), this is a
challenging task. Indirect methods are also highly sensitive to this initial guess
and ill-conditioned.
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• Dealing with “empirical” models (for example, if a function is approximated by
interpolating tabular data) can be a rather difficult or impossible task.

These difficulties limit the applicability of indirect methods to certain problems.

2.4.3 Direct Methods

Direct methods operate in reverse compared with indirect methods: the problem is
“discretized first” to a nonlinear programming problem (NLP) and then solved by an
NLP algorithm (“then optimize”). Their simplicity, as well as the ability to avoid the
complications that arise in alternative methods, have bolstered the adoption of direct
methods; in exchange, their theoretical foundation is usually weaker, they generally
present less accuracy than indirect methods, and proofs of convergence to a solution of
the continuous problem are limited for most methods. The NLPs produced by direct
methods are usually solved by gradient-based optimization methods, such as the Se-
quential Quadratic Programming algorithm SNOPT [76] or the interior point algorithm
IPOPT [77].

There are two main families of direct methods: direct shooting and direct transcrip-
tion.

Direct shooting

Single shooting and multiple shooting have a direct version [75, 78]. In the direct
single shooting method, the control history is discretized as a set of NLP variables4

and the state is propagated using numerical integration. The cost function can then
be computed from the state and control history: it becomes the objective function of
the NLP. Direct multiple shooting methods divide the temporal domain into several
subintervals and act on a similar fashion, with the states at the edges of the subintervals
becoming additional decision variables. By increasing the size of the NLP, multiple
shooting improves reliability, because it reduces the high sensitivity of the single shooting
method to perturbations in the initial conditions and improves the conditioning of the
Jacobian of the problem.

Direct transcription

If the time domain is subdivided into subintervals that match the integration steps,
the resulting method is called a transcription method. In direct transcription methods,
the values of the state variables at each time subinterval become decision variables
together with the control values. The differential equations are transformed into discrete
defect constraints, which relate the values at the beginning of the subinterval to the

4Thus, direct shooting methods are sometimes referred to as “control parametrization” schemes.
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values at the end. Different methods are characterized by the choice of quadrature rule
to approximate the differential equation between each two subintervals. For example,
consider the Euler method in numerical integration of ODEs:

xk+1 = xk + ∆t · f(xk,uk, tk) (2.35)

where ∆t is the step size (∆t = tk+1 − tk). In an Euler-based transcription method,
this exact equation is enforced as a constraint ζk = 0 on variables xk, uk and xk+1 for
each subinterval k.

ζk = xk+1 − xk −∆t · f(xk,uk, tk) (2.36)

The most popular transcription methods are collocation methods, where the evolu-
tion of the state inside each subinterval is represented by a polynomial whose derivatives
are equated to the values of the dynamic equation f at a set of interior nodes within
each subinterval. The Euler method represents the simplest of the collocation methods.

Collocation methods can be classified into two families. In local collocation methods,
the degree of the interpolating polynomial is fixed and accuracy is improved by increasing
the number of subintervals (thus reducing the step-size). Higher-order analogues of the
Euler method, such as the Hermite-Simpson [79] and the Gauss-Lobatto collocation
schemes [80], are the most commonly used among local collocation methods. From the
computational point of view, an important advantage of these methods (though not
unique to them) is the high sparsity of the Jacobian of the Lagrangian. Because each
constraint only relates two adjacent subintervals, only the entries near the diagonal of
this matrix will be populated. Certain NLP algorithms are thus able to take advantage
of this sparsity to speed up computation and obtain good performance.

Alternatively, global collocation or pseudospectral methods have emerged as a pow-
erful alternative to local collocation methods [81, 82]. In a pseudospectral method, the
entire state trajectory may be represented by a high-order interpolating polynomial in a
single subinterval and accuracy is improved by increasing the degree of the polynomial.
The differential equations are then collocated at a set of collocation points determined
with a Chebyshev-Gauss or Legendre-Gauss quadrature rule. Inspired by spectral col-
location methods in fluid dynamics, pseudospectral methods in optimal control started
being studied in the late 1990s. Key early milestones are the formulation of the Leg-
endre Pseudospectral Method (LPM), based on Legendre-Gauss-Lobatto quadrature
[83], and the Chebyshev method [84], later reworked on Clenshaw-Curtis quadrature in
[85]. Later developments include the Gauss Pseudospectral Method (GPM), based on
Legendre-Gauss quadrature [86], and the Radau Pseudospectral Method (RPM) [87, 88],
based on Legendre-Gauss-Radau quadrature.

The main advantage of pseudospectral methods compared to usual direct collocation
methods is the superior rate of convergence for problems that are smooth enough [86].
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While local methods feature polynomial convergence rates on the number of nodes, pseu-
dospectral methods can achieve spectral accuracy [89]: a rate of convergence higher than
any polynomial rate and, in particular, exponential for analytic functions. Additionally,
there is a stronger theoretical understanding of these methods when compared to other
direct methods [86, 88, 90, 91, 92]. It is worth nothing that these methods can also be
applied in a local collocation fashion, fixing the degree of the approximating polynomial
to a low number and increasing the number of subintervals instead of the degree of the
polynomial [87].

Nevertheless, pseudospectral methods are not entirely without drawbacks:

• The individual sections of the Jacobian of the Lagrangian (corresponding to the
differentiation matrix and the collocation constraints for each variable) are no
longer sparse, but dense. This can impose significant computational burdens once
the number of nodes becomes high enough.

• Pseudospectral methods do not handle non-smooth problems well. Because the
solution is represented as a global polynomial, the existence of points where there
is a discontinuity in one of derivatives of the state deteriorates the properties
of these methods. This phenomenon is usually encountered in practice because
of the activation of path constraints and the appropiate way to deal with it is to
reformulate the problem as a multiphase problem [14, 93] or to employ an adaptive
method.

Adaptive methods in direct transcription

A large number of practical optimal control problems feature optimal trajectories
that may display features at different timescales. For example, in a simple optimal
cruise problem, the optimal solution is often composed by an initial phase at either
maximum or minimum throttle until an efficient velocity is reached, a central “singular
arc” phase where the aircraft slowly decelerates as the optimal velocity is adjusted to the
changing mass of the aircraft, and a final acceleration or deceleration phase to match the
terminal velocity (or the minimum allowed velocity, if no final condition is imposed on
the velocity) [94, 95]. This presents a challenge for most direct methods, since choosing
a large step size that is efficient for the long central phase leads to inaccuracies in the
initial and final phases, and choosing a small step size for accurate representation of the
solution at the endpoints is computationally uneconomical for the central singular arc
phase, leading to an oversized NLP.

To alleviate this phenomenon, the numerical optimal control community has pro-
posed the usage of adaptive methods. These algorithms are built on top of other direct
methods and follow this general scheme:
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Algorithm 1: Main loop of an adaptive method in optimal control

1 Select a basic initial grid with an initial step size
2 Solve the problem on the selected grid
3 if solution has the demanded precision then
4 Accept the current solution and terminate the algorithm
5 else
6 Proceed to step 7
7 Use an error criterion to determine which parts of the grid require refinement
8 Design the new grid according to the criterion and go to step 2

Adaptive algorithms differ on the underlying method employed, on the choice of error
or smoothness criterion and the grid-refinement rule. Some relevant adaptive algorithms
are [96, 97, 98, 99], for local collocation methods, and [100, 101] for pseudospectral
methods, which are particularly sensitive to non-smooth trajectories such as trajectories
with changes in the active constraint set.

A related technique that can be employed in place of the error criterion for grid
design is the subdivision of the problem according to constrained and unconstrained
arcs. This was first considered by in the context of low-order direct methods [102, 103],
and later on for pseudospectral methods [14, 104].

2.5 Uncertainty and Differential Equations

2.5.1 Random Variables

Uncertain parameters are mostly modeled within the framework of mathematical
probability or within the framework of interval arithmetic. While the latter approach
has been successfully employed for some problems within the field of robust control
theory [105, 106], it is the former that is predominantly used for this purpose.

The mathematical pillar of probability theory in the common Kolmogorov formu-
lation is the probability space. A probability space (Ω, F , P) is composed by three
elements:

• An abstract sample space Ω of possible outcomes. Every possible realization of
the uncertain parameters is a single point ω ∈ Ω in this space.

• A σ-algebra of events F . This is a collection of subsets of Ω that are called
“events”, that is, groups of outcomes. If an outcome ω ∈ Ω is contained within an
event A ∈ F , the event has taken place in this outcome.
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• A probability measure P that assigns a probability P(A) ∈ [0, 1] to each event
A ∈ F . It is normalized so that P(Ω) = 1.

A random variable is an F -measurable function X : Ω → Rn. Its distribution µX

can then be defined as a probability measure on Rn instead of the underlying abstract
probability space by the relationship µX(B) = P(X−1(B)), with B ∈ Rn.

Uncertainty can be included in differential equations in different forms. Two main
types of differential equations under uncertainty can be identified: the Randomly-
parametrized Differential Equation (RDE) and the Stochastic Differential Equation
(SDE), depending on whether the uncertainty is assumed to be described by random
but static parameters or by randomly-varying dynamical variables.

2.5.2 Randomly-parametrized Differential Equations

In an RDE, we consider a differential equation influenced by a set of uncertain
constant parameters whose probabilistic distribution is known. This class of systems are
called tychastic dynamical systems in [51] and related work. The uncertain parameters
of the system are modeled as a continuous random variable ξ : Ω→ Rnξ that we assume
to be constant in time. For each possible outcome ω ∈ Ω, the random variables take a
different value ξ(ω).

Therefore, for each outcome ω0 ∈ Ω, there exists a unique trajectory path t →
(x(ω0, t), z(ω0, t),u(ω0, t)) that corresponds to the realization of the random variables
ξ(ω0). The dynamics of the system are given by the functions f : Rnx×Rnz×Rnu×Rnξ×
R→ Rnx , h : Rnx×Rnz×Rnu×Rnξ×R→ Rnh , and g : Rnx×Rnz×Rnu×Rnξ×R→ Rng ,
such that valid trajectories fulfill the conditions almost surely (i.e. with probability 1):

d

dt
x(ω, t) =f(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) (2.37)

h(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) = 0 (2.38)

gL ≤g(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) ≤ gU (2.39)

where the ≤ sign applies in an element-wise fashion in Equation (2.39) and analogous
equations, gU − gL > 0 elementwise and nz ≤ nh. Thus, given a policy or open-loop
control sequence that determines the value of the controls, the trajectory will follow
the deterministic differential-algebraic equations (2.37) and (2.38) for each possible re-
alization of the random variable ξ(ω) (as long as the constraints (2.39) allow). We
have employed the notation x(ω, t) to emphasize the dependence of the trajectories on
the random variables; henceforth, we may again use the abbreviated notation x when
working with RDEs for improved clarity.
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2.5.3 Stochastic Differential Equations

Within the framework of stochastic differential equations, the state variables are not
seen as deterministic functions from T to Rnx , but instead as a collection of random
variables on a filtered probability space (Ω,F ,P) which are parametrized by time:

{Xt}t∈T (2.40)

That is, for each t ∈ T there is a random variable

ω → Xt(ω), ω ∈ Ω (2.41)

and, conversely, for each outcome ω there is a path of the process defined as the
function

t→ Xt(ω), t ∈ T (2.42)

The basic building block of an SDE is the Wiener process Wt (often called Brownian
motion as well). Such a process is characterized by the following properties:

• W0 = 0 (within this section, we will assume that t0 = 0)

• The increments of W are independent, i.e. Ws −Wt (with t < s) is independent
of the history of W before t.

• The increments of W are standard Gaussian variables with variance equal to the
time differential, i.e., Ws−Wt (with t < s) has a probability distribution function
of the form:

p(y) = (2π|s− t|)−1/2 exp
(
− y2

2|s− t|

)
(2.43)

• The paths of Wt are almost surely continuous.

Thus, the Wiener process can be viewed as the continuous time limit of a Gaussian
process. Similarly, we can define the n-dimensional Wiener process Wt as a vector whose
components are independent 1-dimensional Wiener process. The probability distribution
function of Ws −Wt, given the history of the process up to t, is given by:

p(y) = (2π|s− t|)−n/2 exp
(
− ||y||

2

2|s− t|

)
(2.44)

An uncontrolled SDE (the only kind that will be considered in Section 3.3.2) in the
Itô formalism is written in the form:

dXt = B(t,Xt) + Σ(t,Xt)dWt (2.45)
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where B : R× Rn → Rn represents the “deterministic” component of the dynamics
while Σ : R×Rn → Rn represents the amplitude and shape of the random perturbations
at any point in time and the state space. We say that the stochastic process Xt is a
solution of Equation 2.45 if it fulfills the integral form of the equation, namely:

Xt = X0 +
∫ t

0
B(s,Xs)ds+

∫ t

0
Σ(s,Xs)dWs (2.46)

where the second integral is an Itô integral (see Chapters 3-5 of [107]).
The mathematical characteristics of stochastic differential equations introduce new

challenges from the point of view of numerical approximation [108], as the numerical
methods for integrating ordinary differential equations do not necessarily extend auto-
matically to the stochastic version.

As the “solution” of a SDE initial value problem is not a single trajectory but a
random trajectory that depends on the underlying source of randomness, the usual
approach to solve SDEs numerically is to simulate a large number of individual paths
of the solution in a Monte Carlo fashion and then obtain statistics such as the mean or
the variance from this solution. The individual realizations of the solution are simulated
using numerical schemes such as the Euler-Maruyama method [109], the Milstein method
[110] or other Taylor or Runge-Kutta5 approximations [111].

2.5.4 Discretization of Random Variables

Given a random variable X with a probability measure µX , most of the magnitudes
of interest related to X can be expressed or computed as integrals of the form:

E[f(X)] =
∫
Rn
f(x)dµX(x) (2.47)

for some function f . For example:

• The expected value of X is E[X]

• The variance of X is Var(X) = E[(X − E[X])2]

• The probability that X ∈ A (where A ⊂ Rn) is E[IA(X)], where IA(x) is the indi-
cator function of the set A. This case includes quantities such as “the probability
that certain variable is equal or greater than a critical value”.

Therefore, from the practical point of view, dealing with random variables often
involves solving or approximating integrals of the form (2.47), often by transforming
them to discrete random variables. There are multiple approaches for carrying out this
task; we summarize in this section some of the most important.

5Despite the name, stochastic Runge-Kutta schemes (as named by [111]) are not just heuristic
adaptations of the deterministic RK methods.
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Monte Carlo

Monte Carlo methods and its derivatives are widely used in science and engineering.
The basic Monte Carlo scheme approximates the integral 2.47 as:

∫
Rn
f(x)dµX(x) ≈ 1

N

N∑
i=1

f(ξi) (2.48)

where the values ξi have been randomly generated according to the distribution dµX .

The main advantage of this method lies in its simplicity of implementation. Its main
drawback lies in the fact that the convergence rate is slow. Under mild assumptions
on f , the error converge at an O(1/

√
N) rate. Therefore, a high N might be required

to provide an accurate result. If the evaluation of f is computationally expensive (for
example, if it requires running a costly simulation), then it might be infeasible to use
a Monte Carlo approach. On the other hand, this convergence rate is independent of
the dimension of the random variable X, thus making it relatively more efficient for
high-dimensional problems than more sophisticated alternatives.

Depending on the complexity of the distribution of X, several variants of Monte
Carlo can be employed to improve its performance. Examples of these techniques are
importance sampling, stratified sampling and the Markov Chain Monte Carlo (MCMC)
family of algorithms [112].

Quasi-Monte Carlo

Quasi-Monte Carlo methods work in a similar fashion to standard Monte-Carlo.
However, instead of generating the evaluation points {ξi} randomly, quasi-MC methods
use a deterministic low-discrepancy sequence that samples the outcome space in a more
even manner than raw Monte-Carlo [113]. While the upper bound for the approximation

error incurred by quasi-MC, O
(

(logN)n

N

)
, can be worse than standard Monte Carlo,

empirical results from the quantitative finance field (starting with [114]) showed that
quasi-MC often converges 1) substantially faster than what the bound seems to indicate
and 2) at arate of O (1/N), asymptotically faster than Monte Carlo. This discrepancy
has been theoretically studied with the concepts of weighted classes of functions [115]
and effective dimension [116]; these ideas rely on the fact that, for certain problems,
not every dimension of the random is equally influential in the quantities of interest.
Nevertheless, there is still no complete understanding of the phenomenon, as researchers
have identified classes of functions with high effective dimension for which quasi-Monte
Carlo still outperforms Monte Carlo with a O (1/N) convergence rate [117].
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Generalized Polynomial Chaos

Generalized Polynomial Chaos (gPC) techniques rely on the expansion of the random
inputs and outputs on an orthogonal polynomial basis [118, 119]. This allows for recovery
of some statistical quantities directly from the expansion coefficients (for example, the
expected value being the first basis coefficient). They come in two forms:

• In the Galerkin form, the variable X is replaced by its gPC expansion in the
formulation of the problem, thus creating a problem on the coefficients of the
expansion. The new problem is then solved to obtain the gPC characterization of
the output.

• In the stochastic collocation form, the deterministic problem is solved for different
values ofX. These values are chosen as the nodes of a quadrature rule. The output
is then characterized as a Lagrange interpolant at this set of nodes (therefore,
stochastic collocation can be seen as a form of building surrogate models). The
gPC coefficients can then be recovered with the quadrature rule.

Both variants of gPC have their own strengths and weaknesses. The Galekin ap-
proach is generally more accurate, but it requires the modification of the underlying
simulator of f (it is intrusive), which might be a difficult or unfeasible task for some
problems. On the other hand, stochastic collocation only requires the deterministic
evaluation of f at a pre-computed set of nodes, building the output approximation in a
cheap post-processing step; it can also be integrated with kriging techniques [120].

Compared to Monte Carlo, gPC has been shown to perform favorably for problems
where the random variables are smooth and low-dimensional [121]. This advantage
vanishes for high-dimensional problems, because the number of expansion coefficients
or function evaluations needed for gPC grows quickly with the number of dimensions
n. A full tensor product grid will scale as O(en); a more efficient sparse grid [122] will
still scale at a high polynomial rate O(nl), where l is the level of the quadrature rule.
This effect limits the accuracy of the gPC expansion for high-dimensional problems, as
increasing the level of the quadrature beyond a low value will quickly make the method
computationally unfeasible. Another drawback of polynomial chaos is the fact that
estimates for the approximation error are usually not available [123].

Cubature

Cubature is a numerical method for the approximation of n-dimensional integrals,
a high-dimensional analog of quadrature rules for one-dimensional integrals. Given a
region Bn ⊂ Rn, a weight function w(x) (in our case, the probability density function)
and a function f(x), a cubature rule approximates the integral as:
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∫
Bn

w(x)f(x)dV = INf +RNf

where INf is computed as a linear combination of values of the function at the
cubature points:

INf =
N∑
i=1

wif(xi)

and RNf is the residual or error of the cubature, which is usually demanded to be
zero for linear combinations of monomials [124]. There are numerous available cubature
rules that differ in the region of computation Bn (usually n-dimensionals cubes, spheres,
simplexes or the whole space) and in the choice of cubature points {xi} and weights
{wi}. A compilation of cubature rules can be found in [125] and [126]. For stochastic
processes (see Section 2.5.3), specific high-dimensional cubature has also been developed
[127]. Finally, some cubature concepts have been put forward for specific robust optimal
control applications [51].

2.6 Dynamic Optimization under Uncertainty

Uncertainty can be integrated into the optimal control problem in several forms,
depending on:

• The nature of the modeled random variable (static or dynamic)

• The component of the problem that depends on the uncertainty (the dynamics,
the cost functional or the constraints).

• The dynamic optimization paradigm.

We will group the main approaches employed in this field in four families: dynamic
programming, stochastic optimal control, the “uncertainty quantification” optimal con-
trol approach, and the robust optimal control approach.

2.6.1 Dynamic Programming

Dynamic programming can be extended to uncertain problems, as it is a policy-based
approach that deals with uncertainty in a natural form. However, the challenges related
to the curse of dimensionality are worsened by the consideration of the dimensionality of
the random parameters, and thus sub-optimal approximate dynamic programming tech-
niques need to be applied in practice to produce a solution with limited computational
resources [53, Chapter 6].
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One particular framework that is often employed in uncertain contexts is the Markov
Decision Process (MDP). In an MDP, a finite set of actions is available at each of the
finite states of the system; the action taken determines the transition of the state at
each stage in a probabilistic manner. The choice of a policy, i.e., a function selecting an
action for each state of a system, reduces the system to a Markov chain. The goal is,
then, to find the policy that maximizes the desired performance index.

Depending on the form of the approximation techniques, the methods for solving the
resulting problem (often grouped under the label of reinforcement learning) can be clas-
sified in multiple families. Traditionally, the value function (assigning scores to states)
or the Q-factors (which maps state-action pairs to scores instead) were approximated,
leading to methods such as Q-learning [128] or Temporal Differences (TD) [129]. More
recently, techniques based on the optimization of parametrized policies have become
more popular, as they can be applied in model-free contexts; however, this generality
comes at a significant cost, as these methods are often significantly less efficient in theory
and practice than model-based approaches [130].

2.6.2 Stochastic Optimal Control

Stochastic optimal control is a policy-based dynamic optimization paradigm. In a
Stochastic Optimal Control Problem (SOCP), uncertainty is represented by a dynamic
stochastic process and the system dynamics are modeled with the aid of a continuous-
time SDE. Thus, stochastic optimal control is the continuous-time equivalent of dynamic
programming. Using an explicit closed-loop feedback law for the controls (in the form
u = u(t,Xt)) has several advantages, since the implementation and simulation of this
controller are straightforward, computationally cheap processes (which is desirable for
real-time controllers).

The linear-quadratic version of the problem (linear dynamics and quadratic costs) has
been explored and used extensively in practice [131], just like its deterministic analogue.
However, the general nonlinear problem SOCP can exhibit a more complex behaviour
than the deterministic OCP due to its stochastic nature [132]. Stochastic analogues to
the deterministic Pontryagin’s Maximum Principle [133] and Hamilton-Jacobi-Bellman
equations [134] have been explored in the literature.

Numerical methods in stochastic optimal control are more challenging than those
in the deterministic case. The traditional approach for solving a SOCP is to discretize
the state space and convert the problem into a discrete Markov Decision Process [135],
which is then solved by dynamic programming techniques. The main drawback of this
methodology is the fact that it suffers from the curse of dimensionality, as the compu-
tational size of the discretized state space grows exponentially on the dimension of the
problem.
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Some ideas have been introduced in the literature in order to avoid the curse of
dimensionality in the context of stochastic optimal control. For certain problems, the
Hamilton-Jacobi-Bellman equation can be transformed to a linear PDE [136], which can
then be solved in an efficient manner. The path integral approach [137, 138, 139, 140]
draws on ideas from physics and approximate dynamic programming in order to produce
a reinforcement learning algorithm that scales to high dimensional control systems. The
algorithm presented in [141] is able to locally solve an approximation to the SOCP and
scales linearly on the number of dimensions, in addition to being parallelizable.

In [142], the state and control trajectories are expanded in a Fourier-like fashion
in an orthonormal polynomial basis spanning the underlying Wiener chaos space using
Malliavin calculus. The SOCP is therefore converted to a deterministic OCP on the
coefficient functions of the expansion, instead of the states. This OCP can now be
solved using mature deterministic optimal methods and the stochastic solution can be
recovered from the solution coefficients.

2.6.3 Uncertainty Quantification Optimal Control

This approach combines a non-intrusive Uncertainty Quantification (UQ) method-
ology with a solver of the deterministic OCP. Under this approach, the deterministic
problem is solved for different values of the uncertain parameters and the statistics of
the solution are built using the corresponding probabilistic representation (usually from
a gPC stochastic collocation scheme). When the uncertain variables are realized, this
probabilistic representation can be used to obtain the deterministic solution correspond-
ing to the final values of the uncertain variables.

This approach is useful to study the probabilistic characteristics of the deterministic
problem when some parameters are unknown. It is also a convenient computational
solution for systems where computation is done before the system starts operating and
uncertainty is solved before the startup point: the solution of the slow and computa-
tionally expensive OCP is stored after calculation and the solution is built in real-time
with a fast interpolation operation.

This methodology is, nevertheless, not applicable for problems where uncertainty
is not completely solved before the system starts operating. In that case, there is no
clear interpretation of the solution, as the probabilistic representation of the trajectory
does not provide a rule to choose the control inputs. The most likely trajectory in this
solution is not only not optimal in general (as optimality does not, in general, commute
with the “most likely” property6): it is almost surely unfeasible.

6As an illustrative counterexample, consider the problem of finding u such that (x−u)2 is minimum,
where x is a random variable x ∈ [−1, 1] with a probability density function p(x) = (1 + εx)/2 and
0 < ε < 1. It can be verified that the most likely solution of the deterministic problem is u = 1, but
the solution that minimizes the average value of (x− u)2 is ε/3, which is closer to 0
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2.6.4 Robust Optimal Control

In the robust (or tychastic, using the terminology of [51]) optimal control approach,
the dynamics of the problem are modeled with an RDE and an open-loop precomputed
control law is employed. In robust optimal control, the fact that the uncertainty has not
been resolved yet at the point of execution is explicitly taken into account. Instead of a
single execution trajectory (as in deterministic optimal control), the solution of a robust
OCP is a set or “tube” of trajectories in state-space that minimizes the expected value
of a cost functional that may not only include an “average” cost, but can also include a
term penalizing the variance or dispersion of the solution. The deterministic dynamical
system is replaced by an augmented “virtual” dynamical system that represents the
dynamics of all the trajectories, so it is converted to a larger deterministic optimal
control problem.

In the particular case where the uncertainty only influences the cost functional and
not the dynamics, the trajectory tube collapses to a single trajectory and thus it is not
necessary to expand the state space. A simpler strategy for solving the problem with a
direct method is replacing the cost functional by an approximation to the probabilistic
cost functional [143].

While this approach is useful for some engineering problems, its reliance on an open-
loop paradigm prevents it from being applied widely; as discussed in Section 2.1, open-
loop concepts are not practical for a lot of problems (and, in particular, flight planning).
In order to apply this concept successfully in more general settings, it is necessary to
extend and generalize this robust optimal control approach to the tracking and policy-
based paradigms. We will perform this task in Chapter 4.

2.7 Flight Planning Applications

We end the chapter with a brief survey of some examples of application of the
described methodologies for dynamic optimization in the context of flight planning.

2.7.1 Deterministic Flight Planning

Flight planning can be defined as the procedure of generating a valid flight plan
with the goal of minimizing fuel burn, flight time and overflight charges while taking
into account weather, traffic, and ATC constraints. In order to deal with the regulation
and structure of the current airspace structure, commercial flight planning tools usually
subdivide the problem into a 2D route optimization problem and a vertical profile and
speed optimization procedure [144].

However, initiatives such as SESAR [145] and NextGEN [146] are promoting the
implementation of free route airspaces, an intermediate step towards the 4D trajectory
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concept. This move towards Trajectory-Based Operations is renewing interest in op-
timal control techniques that can solve complete 4D trajectory optimization problems.
This trend has also been fostered by the growing adoption of Continuous Climb Opera-
tions (CCO) [147] and Continuous Descent Operations (CDO) in major regions Indeed,
recent surveys [47, 148] find that optimal control currently represents the most popular
framework for the solution of this class of problems.

The usage of analytical optimal control techniques to optimize fuel savings started
several decades ago (see [149, 150] and references therein for some early works on ver-
tical profile and speed optimization and [151] on three-dimensional trajectories). More
recently, the work in [152] used Green’s theorem to obtain the solution of the constant
altitude cruise problem; indirect methods have also been employed to obtain the min-
imum fuel cruise with a fixed time of arrival [94]. Complete profiles including climb,
cruise, and descent were studied in [153] and extended for altitude-constrained profiles
[154]. An optimization procedure based on discrete patterns was introduced on [155]
and extended by [156] in order to generate ATC-compliant trajectories composed by
segments of constant Mach and altitude.

Several researchers have also studied the aircraft trajectory optimization problem
with direct methods. Efficient and reliable landing procedures using optimal control
are developed in [95]. As the performance of direct methods is highly dependent on
the initial guess, a method for generating initial guess trajectories for the same problem
is introduced in [157]. In [158, 159], a complete trajectory is optimized using hybrid
optimal control and Mixed-Integer Nonlinear Programming (MINLP), and a similar
approach is employed in [160] in order to include contrail avoidance in the objective
function. The flexibility of direct methods enables advanced concepts proposed in the
literature, such as linear holding [161].

Meta-heuristic methods have been also employed in the literature to solve trajec-
tory optimization problems. Some examples are bee colony [162] and ant colony [163]
algorithms, simulated annealing [164], and beam search [165]. Genetic algorithms are
also studied for trajectory optimization [166, 167] as well as multi-aircraft deconfliction
[168, 169].
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2.7.2 Wind-optimal Aircraft Trajectories

While wind and weather have an important influence on trajectory efficiency, a siz-
able amount of works on this topic (including some of the studies cited in Section 2.7.1)
do not take it into account. Nevertheless, the problem of optimal aircraft routing in
general wind fields has indeed been specifically studied in the optimal control literature.
The earliest works trace their roots to the “Zermelo problem” [170]. In this setting, a
vehicle (in the original formulation, a boat) moves with constant relative speed with
respect to an airmass, whose movement is described as a constant or time-varying wind
field; the optimal heading can then be obtained as the solution of a differential equation
by employing the optimal control framework.

One of the first modern studies on the topic was [171], which relied on the techniques
of Neighbouring Optimal Control (NOC). A guidance method in a general wind field is
developed, as well as a NOC-based algorithm, which solves a linearized system describing
a perturbation around a nominal trajectory. In [172], this method (called Near-Optimal
Wind Routing) is compared with an “Optimal Wind Routing” solution, which integrates
a differential equation (obtained by analytical optimal control techniques) from the
destination point with different values of a parameter in order to find a route that passes
through the initial point. Additional work on this class of techniques has been carried
out in [173], which considers time-varying wind fields and variable airspeed, and another
analytical optimal control-based method is applied in [174] to find optimal routes in the
presence of winds while avoiding contrail formation. This method is combined with a
vertical profile optimization method in [175].

Methods based on dynamic programming have also been employed for the calculation
of wind-optimal paths. In [176], an efficient dynamic programming approach relying on
an ordered upwind method is used to optimize the 2D trajectory of a constant-velocity
aircraft. This method is extended in [177] to consider the flight on the surface of a
sphere in order to adapt it to medium- and long-haul flights. Dijkstra’s algorithm is
also employed for route-optimization problems in some works [178, 179].

In contrast with these works, which apply to general wind fields but usually make
other simplifications (such as constant airspeed or altitude), the studies in [180, 181, 182]
study the effect of average along-track wind speeds while considering variable speed, with
a formulation based on indirect methods. In [153], hybrid multiphase optimal control is
used to generate complete climb, cruise and descent profiles with the ability to consider
general wind profiles.

Direct methods, which have the potential of dealing with more complex and complete
problems as discussed in Section 2.4.3, have also been used to optimize trajectories on
general wind fields. In [158], [183] and [159], the wind is modeled as a polynomial
obtained by regression on tabular data and hybrid optimal control is used in conjunction
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with a direct transcription to solve the optimal control problem; the wind approximation
scheme is improved in [13] with a multiphase formulation.

Other methods on trajectory optimization on general wind fields without using op-
timal control were developed in [184, 185], which use a genetic algorithm and a perfor-
mance database to obtain optimal 4D trajectories.

2.7.3 Aircraft Flight Planning under Uncertainty

Recently, interest has been growing on the quantification of the impact of uncertainty
on all aspects of the ATM system. In particular, as mentioned in Chapter 1, the SESAR-
sponsored IMET project was set up with the goal of utilizing ensemble meteorological
data to study the impact of meteorological uncertainty and improve decision-making in
ATM and pre-tactical flight planning operations. Some results were presented in [40],
where the impact of meteorological uncertainty on a North Atlantic route was studied,
and [41], where the information from a “Probabilistic Trajectory Planning” framework
is employed to provide uncertainty information to the flight planner. In [186], emsemble
data was also employed in a robust flight planning scheme based on mixed-integer linear
programming.

However, the consideration of uncertainty as an input to the flight planning process
instead of as a component of the outcome of a flight (i.e. as a robust or stochastic optimal
control problem) plan has not been studied in depth on this field and the literature on
the topic is sparse. There are some studies solving what we called the “uncertainty
quantification OCP” (see Section 2.6.3). In [187], this approach is used in order to solve
the problem of optimal aircraft routing through an environment with lethal threats
of uncertain location, and it combines polynomial chaos for uncertainty quantification
and pseudospectral methods for solving the deterministic OCP. A similar approach is
employed in [188, 189] and related work in the context of conflict resolution.

In [50] (based on the method of [48]), the authors deal with what we call the “Robust
OCP” in order to find the controls for the shortest climb of a supersonic aircraft, which
used a polynomial chaos technique to characterize aerodynamic data uncertainty and
integrates this representation into the problem formulation. The robust approach is
compared with the uncertainty quantification approach. A robust scheme is also used in
[49] in order to optimize the trajectory of an unmanned aerial vehicle based on dynamic
soaring. Nevertheless, as noted in [50], the field of nonlinear robust dynamic optimization
has not been explored in depth.

As a consequence, developing an appropriate methodology for 4D trajectory opti-
mization under weather-related uncertainty is one of the main challenges addressed in
this thesis.
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2.7.4 Convective Environments

Turning our attention to convective weather avoidance, the flight planning literature
describes multiple kinds of algorithms that have been employed for this purpose. The
simplest of them are based on geometric-heuristic procedures [190, 191]. These methods
do not generally consider thunderstorm evolution, uncertainty, or trajectory optimality;
however, as discussed in Section 2.2.1, their simplicity results in fast computational times
(thus being compatible with real-time usage) and easy implementation and integration
with other tools and algorithms. Indeed, the Dynamic Weather Routes tool [192] im-
plements the Autoresolver algorithm [193] with convective nowcasts in order to create
a weather avoidance system, which has been enhanced to provide common avoidance
trajectories to multiple aircraft in the Dynamic Multi-Flight Common Route Advisories
system [194, 195].

A second class of methods is based on graph-search algorithms such as Dijkstra’s
shortest path algorithm, A∗ or D∗. These methods feature good computational prop-
erties too, but it is harder to model time-varying costs (such as fuel burn) and aircraft
dynamics. An A∗ algorithm is employed in [196] to generate weather avoidance routes in
a TRACON impacted by convective activity. In [197], the authors combine a variant of
Dijkstra’s algorithm with a multi-objective genetic algorithm in order to produce a set of
proposed reroutes around convective weather, as represented by the FAA’s Convective
Avoidance Weather Model (CWAM). In [198], CWAM weather forecasts were employed
in combination with Dijkstra’s algorithm to minimize a combination of fuel burn and
expected cost of deviation due to weather. In [199], the any-angle path planning field D∗

algorithm is applied in a receding horizon fashion in order to minimize a combination
of flight time and accumulated probability of bad weather conditions along the route.

Mathematical programming techniques have also been studied for route selection
under convective weather [200]. In [201, 202], a global optimization method is employed
for the solution of routing problems.

Alternatively, methods that consider aircraft dynamics explicitly can be employed.
In [203], a receding horizon optimization scheme is employed in order to compute avoid-
ance trajectories. A different approach involves formulating a stochastic reach-avoid
problem [6, 10, 204], which is then solved through dynamic programming techniques.
Markov Decision Process techniques have also been employed in related works [205]. In
[206], which addresses the topic of for midair conflict resolution and bad weather avoid-
ance, uncertainty in the dynamics and wind is modeled through a stochastic differential
equation and the resulting optimal control problem is solved by discretizing the state
space to obtain an MDP, which is solved through Jacobi iteration. In [207, 208, 209],
algorithms for multi-aircraft routing and traffic flow management under uncertain con-
vective weather conditions is proposed, again relying on MDP dynamic programming
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techniques. As these works rely on state space discretization, they are therefore vul-
nerable to the “curse of dimensionality”, i.e., the exponential scaling of the required
computational resources with the dimension of the problem.

None of the methods studied in the literature is yet able to generate realistic, model-
based trajectories that take into account both aircraft dynamics and uncertain thun-
derstorm evolution with real-time or near-real-time computational times. Therefore, in
this thesis we will also aim to develop a methodology for aircraft trajectory planning in
the presence of convective thunderstorms whose evolution is considered uncertain.



CHAPTER

THREE

Modeling

This chapter introduces the dynamical, physical and mechanical models that are em-
ployed in this thesis to describe the motion of the aircraft within an ATM context and
the meteorological data sources employed. It is divided in three parts: Section 3.1 covers
the behaviour and performance of the aircraft at the ATM scale. Section 3.2 introduces
the models of the meteorological and atmospheric variables that be employed through-
out this thesis, while and Section 3.3 describes the specific variables and data sources
employed in the modeling of convection.

47
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3.1 Aircraft Dynamics

The processes of trajectory simulation, prediction and optimization depend on accu-
rate models of the aircraft dynamics that are able to replicate its behaviour in practice.
At the same time, it is not necessary to consider phenomena that take place at spa-
tiotemporal scales that are not of interest, as doing so would increase computational
burdens and demand higher resolutions in time integration while not providing any
practical benefit of significance.
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Figure 3.1: Characteristic times of aircraft dynamics.

In the ATM field, most studies employ a three-degrees-of-freedom (3-DoF) point-
mass model. Figure 3.1 illustrates the main dynamic characteristics that are relevant
for most ATM-related work and are, therefore, captured with this model. In this model,
the aircraft is represented as a point mass moving in a three-dimensional space; therefore,
its state at any point in time is characterized by its 3-dimensional position coordinates,
a 3-dimensional velocity vector and its mass m.

3.1.1 Reference Systems

The position coordinates will be taken with respect to the WGS84 reference ellipsoid,
as it is common in ATM studies. In this reference system, the surface of the Earth is
represented as an oblate spheroid with an equatorial radius of a = 6378.137 km and a
flattening of 1/298.257; therefore, the polar radius has a length of b = (1−f)a = 6356.752
km; see Figure 3.2 for reference. The actual surface of the Earth, as modeled by the
EGM2008, deviates from this reference ellipsoid by around ±100 m.
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Figure 3.2: The Earth-Centered, Earth-Fixed reference frame in the WGS84 reference ellip-
soid

We start from a reference frame that rotates with the Earth (see Figure 3.2):

Definition 3.1.1. The Earth-Centered, Earth-Fixed (ECEF) reference frame is defined
as having its origin at the center of gravity of the Earth and axes as follows:

• Its first axis XECEF points towards the intersection at latitude 0º of the Equator
and the Greenwich meridian.

• Its third axis ZECEF points towards the North pole.

• Its second axis YECEF completes a right-hand-oriented axes system.

Due to the translation and rotation of the Earth, the ECEF reference frame is not
inertial. However, the associated non-inertial acceleration terms can be neglected at
typical aircraft speeds, because they are several orders of magnitude smaller than that
of gravity while the forces actuating on an aircraft are on the order of the gravita-
tional attraction (in the vertical axis) and one order of magnitude below gravity (in the
horizontal axis). Thus, we adopt the following assumption:
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Assumption 3.1. The ECEF reference frame can be considered inertial.

The Cartesian coordinates in the ECEF system can now be employed to represent
the position of the aircraft. In aviation, however, it is more convenient to employ
Geodetic Reference System (GRS) coordinates; namely, latitude φ, longitude λ and
geodetic altitude h. The conversion between ECEF position and GRS coordinates is
given by Equations 3.1 – 3.3

xECEF = (RN (φ) + h) cosφ cosλ (3.1)

yECEF = (RN (φ) + h) cosφ sinλ (3.2)

zECEF = (RN (φ)(1− e2
◦) + h) sinφ (3.3)

where e◦ is the first eccentricity and RN (φ) is the ellipsoid radius of curvature in the
prime vertical at a location of latitude φ:

e◦ =
√
f(2− f) (3.4)

RN (φ) = a√
1− e2

◦ sin2 φ
(3.5)

We will also define RM (φ), the radius of curvature in the meridian:

RM (φ) = a(1− e2
◦)(

1− e2
◦ sin2 φ

) 3
2

(3.6)

When working with the equations of motion in GRS coordinates, it is useful to
employ a reference system that is aligned with the ellipsoid surface at each point. For
that purpose, we define a local horizon reference system:

Definition 3.1.2. The local horizon reference system SLRS is centered on the aircraft’s
center of gravity and has axes arranged as follows (see Figure 3.3):

• XLRS parallel to the ellipsoid surface, pointing towards the North.

• YLRS parallel to the ellipsoid surface, pointing towards the East.

• ZLRS orthogonal to the ellipsoid surface, pointing towards nadir.

We denote its associated basis vectors as {iLRS, jLRS,kLRS}. The evolution of the
GRS coordinates when the aircraft moves with a velocity of vECEF = vxiLRS + vyjLRS +
vzkLRS with respect to the ECEF frame is given by:

φ̇ = vx
(RM (φ) + h)

λ̇ = vy
(RN (φ) + h) cosφ

ḣ = −vz

(3.7)
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Figure 3.3: The Local Reference System

Finally, in order to represent the aerodynamic forces, we will employ two reference
systems related to the concept of airspeed.

Definition 3.1.3. The airspeed vector v, representing the velocity of the aircraft relative
to the surrounding airmass, is defined as v = vECEF − vw, where vECEF represents the
velocity of the aircraft with respect to the Earth and vw represents the velocity of the
wind field at the location of the aircraft.

Definition 3.1.4. The airspeed v is defined as the modulus of the airspeed vector, i.e.,
v = ||v||.

Definition 3.1.5. The Mach number M is defined as the ratio of the airspeed v to the
speed of sound a0 at a given position, i.e. M = v/a0.

Definition 3.1.6. The groundspeed vg is defined as the modulus of the projection of
the absolute speed vector vECEF onto the ellipsoidal plane, i.e.,

vg = ||(vECEF · iLRS)iLRS + (vECEF · jLRS)jLRS|| (3.8)

Assumption 3.2. The wind speed has a negligible component in the direction of ZLRS;
thus, it can be expressed as vw = wyiLRS + wxjLRS
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Definition 3.1.7. The wind-fixed reference frame SW is defined with an origin at the
center of mass of the aircraft and axes arranged as follows:

• XW aligned with the airspeed vector

• YW orthogonal to the plane of symmetry of the aircraft, pointing towards star-
board.

• ZW contained in the plane of symmetry of the aircraft, closing a right-hand-
oriented system.
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Figure 3.4: The Wind-Fixed Reference Frame
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This reference frame can be obtained from the local horizon by performing a sequence
of three Euler rotations, illustrated in Figure 3.4:

1. A rotation of SLRS around ZLRS of magnitude χ (called the heading angle). This
generates an intermediate reference system S1, with basis vectors {i1, j1,k1}.

2. A rotation of S1 around Y1 of magnitude γ (called the flight path angle). This
generates an intermediate reference system S2, with basis vectors {i2, j2,k2}.

3. A rotation of S2 around X2 of magnitude µ (called the bank angle), generating the
wind-fixed reference frame SW .

3.1.2 Model of Forces

In order to derive the equations of motion of a vehicle, we need to consider the forces
that are acting on it, as well as any source of variations to its mass. In the case of
an aircraft, the relevant forces are the aircraft weight, the thrust from the engines and
the aerodynamic forces, and its mass varies mainly due to the gradual consumption of
fuel. In this work, we will employ an Aircraft Performance Model (APM) to supply the
aerodynamic and propulsive functions associated to these forces: the Base of Aircraft
DAta (BADA) model, developed and maintained by the Eurocontrol Experimental Cen-
tre (EEC) in colaboration with aircraft manufacturers. There are currently two versions
of BADA in use:

• The older BADA 3 family [210], which covers most of the aircraft types operating
over the ECAC area.

• The newer BADA 4 famiy [211] covers fewer aircraft types (around 70% at the
moment) and has a more restrictive licensing model, but it provides a more ac-
curate modeling of several components (for example, by including compressibility
effects in the drag polar).

Figure 3.5 represents the relationships between these forces; we now proceed to
examine them.
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Figure 3.5: Forces diagram.
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Weight

Due to the irregularity of the shape of the Earth and the inhomogeneity in its density,
the gravitational field generated by the Earth is not regular and models such as EGM96
and EGM2008 can be used as approximations to it. Nevertheless, for ATM applications
the error incurred by using a spherical approximation is negligible compared to other
sources of error. Thus, the weight is given by:

W = mg0

(
RE

RE + h

)2
kLRS (3.9)

where RE represents the mean radius of the Earth while g0 = 9.81 m·s−1 represents
the average value of the gravitational attraction at sea level. Since, as explained in
Section 3.1.4, we will be dealing with flight at an almost-constant altitude, the term
g0

(
RE

RE+h

)
can be replaced by a constant gh := g0

(
RE

RE+h

)
. Thus, the weight force is

given by:

W = mghkLRS (3.10)

For the remainder of this thesis, we will employ g as a synonym for gh.

Thrust and fuel burn

When modeling the thrust force, the following simplification is valid for our purposes:

Assumption 3.3. The thrust force T is aligned with the airspeed vector v; i.e.,

T = Tiw (3.11)

The thrust is assumed to be regulated by the throttle or thrust parameter CT ,
which we will model as a control of the system. Higher thrust production (↑ CT ) is
associated with higher fuel burn fc; the relationship depends on the airspeed and other
environmental variables:

fc = fc(CT , v, . . .) (3.12)

The variation of the mass of the aircraft can now be represented by:

ṁ = −fc (3.13)
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Aerodynamic forces

As the aircraft moves in an airmass, it experiences an aerodynamic force A. This
force is commonly expressed in the wind-fixed reference frame as:

A = L + D + Y = − (Lkw + Diw + Yjw) (3.14)

where L is called the lift, D is the drag, and Y is the lateral force.

Assumption 3.4. The aircraft is in symmetric, coordinated flight and the airspeed
vector is contained in the plane of symmetry of the aircraft, i.e., the sideslip angle is
zero.

As a consequence of Assumption (3.4), the lateral force is negligible in this context.
We now define the coefficients of lift CL and drag CL by normalizing by the product of
the dynamic pressure q = 1

2ρv
2 and the wetted area S:

CL = L
1
2ρSv

2 (3.15)

CD = D
1
2ρSv

2 (3.16)

At a given aerodynamic configuration, the lift coefficient is determined by the angle
of attack, which is controlled by the pilot or autopilot in order to generate enough lift
to reach the desired rate of ascent or descent; thus, in this thesis we will treat the lift
coefficient as a control of the dynamical system. An increase in the lift coefficient induces
an increase in the drag coefficient; the relationship between both coefficients is known
as the drag polar :

CD = CD(CL,M) (3.17)

As we will explain in Section 3.1.4, we will study the cruise phase of a flight, and
thus we will only consider a clean aerodynamic configuration (i.e. with retracted landing
gear and no deployed high-lift devices or speed brakes). The corresponding drag polars
will be drawn from the BADA model.

3.1.3 The 4D Equations of Motion

The state vector of the aircraft is given by the three GRS position coordinates (lat-
itude φ, longitude λ and geodetic altitude h), the three velocity parameters (airspeed
v, flight path angle γ and heading χ) and its mass; meanwhile, the control vector is
composed by the coefficient of thrust CT , the coefficient of lift CL and the bank angle
µ . The airspeed vector v can be expressed in the local horizon reference frame as:

v = (v cos γ cosχ) iLRS + (v cos γ sinχ) jLRS − (v sin γ) kLRS (3.18)
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Making use of Definition 3.1.3 and Assumption (3.2) to generate the absolute speed
vector vECEF and employing Equation (3.7), we can write the differential equations for
the position coordinates as:

φ̇ = v cos γ cosχ+ wy
(RM (φ) + h)

λ̇ = v cos γ sinχ+ wx
(RN (φ) + h) cosφ

ḣ = v sin γ

(3.19)

At the same time, the evolution of the mass of the aircraft is given by Equation (3.13).
In order to complete the equations of motion (EoM), we need to obtain differential
equations for v, γ and χ; for convenience, we will make use of additional assumptions
to do so.

Assumption 3.5. (Flat-Earth assumption) The rotation of the local horizon with re-
spect to the ECEF frame can be disregarded at typical aircraft speeds, being on the order
of vcharacteristic/RE ≤ 4 · 10−5rad · s−1.

Assumption 3.6. The mass of the aircraft varies at a slow rate and the propulsive
effect of mass loss is already included in the propulsive model, so that it can be safely
assumed that the mass of the aircraft is constant for the derivation of the equations of
motion.

The derivative of the wind velocity as experienced by the aircraft with respect to
time depends on the variation of the wind field with respect to time as well as its spatial
gradient:

dvw
dt

= ∂vw
∂t

+ vECEF · ∇vw (3.20)

Assumption 3.7. dvw
dt

is small enough that the wind can be assumed to be locally
constant when deriving the equations of motion.

In an inertial frame, Newton’s second law for a point mass specifies that:∑
F = m

dvECEF

dt
(3.21)

Using Assumption (3.7) implies that the variation of the velocity of the aircraft is
equal to the variation of the airspeed vector:

dvECEF

dt
= dv
dt

+ dvw
dt
≈ dv
dt
⇒
∑

F = m
dv
dt

(3.22)
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Now, since the airspeed vector is expressed in a rotating reference frame as v = viw,
expanding its derivative with the transport theorem leads to:∑

F = m
dv
dt

= m (v̇iw + ωw × (viw)) (3.23)

where ωw represents the rotation of the wind-fixed reference frame with respect to
the inertial frame. Using Assumption (3.5) to disregard the terms associated to the slow
rotation of the local horizon, we can express ωw in terms of the wind-fixed system as:

ωw = χ̇kLRS + γ̇j1 + µ̇i2 =
[
iw jw kw

] −χ̇ sin γ + µ̇

χ̇ cos γ sinµ+ γ̇ cosµ
χ̇ cos γ cosµ− γ̇ sinµ

 (3.24)

and, therefore,

ωw × (viw) = v (χ̇ cos γ cosµ− γ̇ sinµ) jw + v (χ̇ cos γ sinµ+ γ̇ cosµ) kw (3.25)

Working on the left-hand side, we express the sum of forces in the wind-fixed frame:

∑
F = L + D + T + W =

= −Lkw + Tiw −Diw +mg(− sin γiw + cos γ sinµjw + cos γ cosµkw)

= (T−D−mg sin γ)iw +mg cos γ sinµjw + (mg cos γ cosµ− L)kw (3.26)

Gathering the terms on iw, jw and kw in both the right-hand and the left-hand side,
we arrive to the following set of equations:

T−D−mg sin γ = mv̇ (3.27)

mg cos γ sinµ = (χ̇ cos γ cosµ− γ̇ sinµ)mv (3.28)

−L +mg cos γ cosµ = (χ̇ cos γ sinµ+ γ̇ cosµ)mv (3.29)

Equation (3.27) provides the derivative of the airspeed. Multiplying Equation (3.28)
by sinµ and adding the product of Equation (3.29) by cosµ leads to the following
expression for γ̇

mg cos γ − L cosµ = −γ̇mv (3.30)

Similarly, multiplying Equation (3.28) by cosµ and substracting the product of Equa-
tion (3.29) by sinµ leads to the following expression for χ̇

L sinµ = χ̇ cos γmv (3.31)

Collecting Equations (3.13), (3.19), (3.27), (3.30) and (3.31), we can build the 4D
equations of motion for the full 4D point-mass model, which we will denominate the
4D-γ model:
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4D-γ model

State variables: φ, λ, h, v, γ, χ, m

Control variables: CL, CT , µ

Differential equations:

φ̇

λ̇

ḣ

v̇

γ̇

χ̇

ṁ



=



v cos γ cosχ+ wy

(RM (φ) + h)

v cos γ sinχ+ wx

(RN (φ) + h) cosφ

v sin γ

T(CT )−D(CL)
m

− g sin γ

L(CL)
mv

cosµ− g

v
cos γ

L(CL) sinµ
mv cos γ

−fc(CT )



Note that some of the functional dependencies have been omitted for clarity; in
particular, the environmental variables depend on the position, and the aerodynamic
forces and propulsive relationships depend on the environmental variables.

A useful and common simplification is to ignore flight path angle dynamics (as they
take place at a scale of seconds); employing this assumption, γ can be modeled as
a control. In order to do that, we set γ̇ = 0 in Equation 3.30 and apply the resulting
constraint either in an explicit form (as a constraint) or in an implicit form (by removing
CL as a control and replacing it with the expression resulting from solving Equation 3.30
for CL ).
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4D-e model

State variables: φ, λ, h, v, χ, m

Control variables: CL, CT , γ, µ

Differential equations:

φ̇

λ̇

ḣ

v̇

χ̇

ṁ



=



v cos γ cosχ+ wy

(RM (φ) + h)

v cos γ sinχ+ wx

(RN (φ) + h) cosφ

v sin γ

T(CT )−D(CL)
m

− g sin γ

L(CL) sinµ
mv cos γ

−fc(CT )


Algebraic constraints:

L(CL) cosµ = mg cos γ

4D-i model

State variables: φ, λ, h, v, χ, m

Control variables: CT , γ, µ

Differential equations:

φ̇

λ̇

ḣ

v̇

χ̇

ṁ



=



v cos γ cosχ+ wy

(RM (φ) + h)

v cos γ sinχ+ wx

(RN (φ) + h) cosφ

v sin γ

T(CT )−D(CL(γ, µ))
m

− g sin γ

L(CL(γ, µ)) sinµ
mv cos γ

−fc(CT )



with CL(γ, µ) = 2mg cos γ
ρv2S cosµ

The first choice leads to the 4D-e model, while the second choice generates the
4D-i model. Both models are mathematically equivalent (and different from the 4D-
γ model) and generate equivalent optimization models when discretized with direct
methods; however, they have different numerical properties, as the explicit model (4D-
e) has more variables and constraints but lighter expression trees (and, therefore, faster
function evaluation).

3.1.4 Reduced Models

In this work, we will only consider the cruise phase of a flight. The main reason
is that the uncertainty due to wind is cumulative, and thus most of the uncertainty is
“accumulated” during the cruise phase for any medium-haul of long-haul flight. While
the methods presented in Chapters 4 and 5 can be applied to more complex scenarios,
such a choice would complicate the implementation and exposition of the methodology
while providing little additional insight or precision. Thus, such an extension falls outside
of the scope of this thesis.
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Figure 3.6: Phases of a flight.

Assumption 3.8. A flight level is defined as a spatio-temporal surface of constant
geopotential pressure altitude (see Section 3.2.1 for the definition). A common desig-
nation is “flight level xyz” (often denoted as “FLxyz”), which describes a surface with
HFL
p = 100 · xyz feet.

Assumption 3.9. The flight takes place at a constant flight level.

Under Assumption 3.9, 4D-e model and 4D-i model can be employed directly with
the addition of the following constraint:

Hp(φ, λ, h, t) = HFL
p (3.32)

It is possible to simplify the model considerably by noting that γ ≈ 0 under this
assumption. Let us define the horizontal position vector r(t) = (φ(t), λ(t)). Then,
Equation 3.32 implies that

Ḣp(φ, λ, h, t) = 0⇒ ∂Hp

∂h

dh

dt
+ ṙ · ∇rHp + dHp

dt
= 0 (3.33)

Assumption 3.10. The derivatives of the geopotential pressure altitude ∇rHp and
dHp/dt are negligible.

Since ∂Hp

∂h
≈ 1, Assumption 3.10 leads us to ḣ ≈ 0 and thus γ = arcsin

(
ḣ
v

)
≈ 0.
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Assumption 3.11. The flight path angle γ is 0

This assumption leads to the explicit 2Dt-mµ-e model and the implicit 2Dt-mµ-
i model:

2Dt-mµ-e model

State variables: φ, λ, v, χ, m

Control variables: CL, CT , µ

Differential equations:

φ̇

λ̇

v̇

χ̇

ṁ



=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL)
m

g

v
tanµ

−fc(CT )


Algebraic constraints:

L(CL) cosµ = mg

2Dt-mµ-i model

State variables: φ, λ, v, χ, m

Control variables: CT , µ

Differential equations:

φ̇

λ̇

v̇

χ̇

ṁ



=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL(µ))
m

g

v
tanµ

−fc(CT )



with CL(µ) = 2mg
ρv2S cosµ

If a problem does not involve turning dynamics to a significant extent (for example,
in long-range planning), then these models can be simplified further by assuming that
µ ≈ 0, removing turn dynamics χ̇ and letting χ be a control. Thus, we define the
2Dt-m-e model model and the 2Dt-m-i model as:
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2Dt-m-e model

State variables: φ, λ, v, m

Control variables: CL, CT , χ

Differential equations:

φ̇

λ̇

v̇

ṁ


=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL)
m

−fc(CT )


Algebraic constraints:

L(CL) cosµ = mg

2Dt-m-i model

State variables: φ, λ, v, m

Control variables: CT , χ

Differential equations:

φ̇

λ̇

v̇

ṁ


=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL)
m

−fc(CT )



with CL = 2mg
ρv2S

Finally, if constant airspeed is assumed (v = v0), it is useful to remove aerodynamic
forces, fuel burn and mass evolution from the model. When building an optimal control
problem, the conventional objective to minimize is a weighted average of flight time
and fuel consumption, where the weight given to each objective depends on the cost
structure of the airline. The main influence of this weight is the planned airspeed,
as higher airspeeds shorten the duration of the flight but also require more thrust to
compensate an increased drag. However, if the airspeed is fixed, then both objectives
become heavily correlated, as a shorter flight will generally burn less fuel; thus, from
a computational perspective, it is useful to reduce the problem to a minimum-time
problem, as it will simplify and speed up the optimization progress. Fuel consumption
can then be computed a posteriori by integrating the rest of the dynamics. Under these
assumpions, the model simplifies to the 2Dt model:
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2Dt model

State variables: φ, λ

Control variables: χ

Differential equations:
φ̇

λ̇

 =


v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ



3.1.5 Aircraft Performance Limitations

The models introduced in Section 3.1.3 and Section 3.1.4 describe the essential
differential-algebraic equations required to characterize the motion of the aircraft for
our purposes. However, in order to obtain realistic trajectories and flight plans it is nec-
essary to incorporate additional constraints into the model. These constraints represent
the flight envelope and performance limits of the aircraft, and must be provided by the
APM (in our case, the BADA specification). Table 3.1 represents the constraints that
we will employ. Again, the functional dependencies of these variables in the states and
controls have been omitted for clarity:

Description Expression Type
Maximum altitude h ≤ hmax State
Maximum airspeed vCAS ≤ vCAS,max State
Maximum Mach number M ≤ vCAS,max State
Max. and min. thrust CT,IDLE ≤ CT ≤ CT,max State and control
Maximum bank angle |µ| ≤ µmax Control
Maximum flight path angle |γ| ≤ γmax State or control
Maximum lift coefficient CL ≤ CL,max Control 1

Mass limits 2 mOEW +mpl ≤ m ≤ mMTOW State

Table 3.1: Aircraft performance limitations

1This limitation is a control constraint in explicit models, but a state and control constraint in
implicit models.

2In this constraint, mOEW represents the Operating Empty Weight, mpl represents the mass of the
crew, passengers, luggage, cargo, and crew equipment and mMTOW represents the Maximum Takeoff
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3.2 Meteorological Modeling

3.2.1 Environmental and Weather Model

The forces experimented by the aircraft are influenced by the characteristics of the
air (temperature T , pressure P and density ρ) in which it moves, as well as the wind
vw. These variables, depend, in general, on the position of the aircraft and on time:

T = T (φ, λ, h, t)
P = P (φ, λ, h, t)
ρ = ρ(φ, λ, h, t)

vw = vw(φ, λ, h, t)
g = g(φ, λ, h)

(3.34)

In meteorology and aviation, it is convenient to express these relationships in terms
of geopotential altitude, H, instead of geodetic altitude h. The geopotential altitude is
defined in differential terms, starting from a value of 0 at the ellipsoid surface:

g0dH = gdh (3.35)

where g0 is the average gravitational acceleration at sea level and g is the gravitational
acceleration at altitude.

The reference model for the temperature, pressure and density profiles is the In-
ternational Standard Atmosphere (ISA) model, which has been adopted as an ICAO
standard and is based on the assumption of hydrostatic equilibrium with a fixed tem-
perature profile. For aviation purposes, it is sufficient to consider the troposphere and
tropopause; in the ISA model, the boundary between both atmospheric layers takes
place at an altitude of 11 km. In this model, the atmospheric variables can be computed
as functions of the geopotential altitude:

T = TISA(H)
P = PISA(H)
ρ = ρISA(H)

(3.36)

Weight.
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Figure 3.7: The ISA model

The ISA model is particularly important for aviation, as it is employed to define
certain reference variables. In particular, the geopotential pressure altitude, Hp, is
defined as the altitude at which the pressure according to the ISA model corresponds
to the measured pressure:

Hp = P−1
ISA(P ) (3.37)

This measure is particularly important for aircraft navigation, since it can be com-
puted just from barometer readings, facilitating air traffic control.

For simulation and optimization, it is not necessary to assume ISA profiles for at-
mospheric variables, as they can be obtained from meteorological forecast data. At
the planning horizon, we will make use of global ensemble medium-range weather fore-
casts. The usage of global models allows us to consider intercontinental flights (as
higher-resolution limited-area models have limited oceanic coverage), while the usage of
ensemble forecasts instead of deterministic ones allows us to model the uncertainty in
the forecasts. Section 3.2.2 describes turns to this topic.
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3.2.2 Ensemble Forecasts

We will represent the uncertainty in meteorological forecasts at the planning horizon
with EPS forecasts. The goal of an EPS is to produce a collection of forecasts (typically
from 10 to 50) for the same prediction time that constitutes a representative sample
of the possible future states of the atmosphere. The individual forecasts are called the
members of the ensemble.

In order to generate different forecasts according to the uncertainty in the initial
conditions, parametrized models of physical processes and approximation errors, dif-
ferent NWP centers employ combinations of several techniques. These methods in-
clude changing initial conditions in the most sensitive directions, changing the param-
eters of the simulation, combining different models or building time-lagged ensembles
[212, 213, 214, 215].

Characteristics

For deterministic medium-range prediction, the typical setup of a forecasting system
is a hydrostatic dynamical core with a horizontal resolution of around 15km and around
80 levels from surface to the top of the model, usually between 50 km and 80 km of
altitude. Standard practices involve running the model 2 or 4 times a day, with output
at a 1-, 3-, or 6-hour intervals.

For deterministic short-range prediction, the model is restricted to a limited area,
non-hydrostatic effects are taken into account, and the resolution is improved to a hori-
zontal grid of 1.5 to 5 km. Runs are also shorter (around a day of output) and run more
frequently (from 4 to 8 times a day).

Since ensemble predictions require multiple model runs (10 to 50) for the same time
interval, lower resolutions compared with the deterministic systems are used. The hori-
zontal resolution is around twice the resolution for the deterministic prediction, and the
vertical levels are also reduced. Depending on the area of interest and the target time
interval, ensemble predictions can be classified in three categories:

• Global, medium-range forecasts are run for the whole globe and usually aim at fore-
casting 2 to 10 days ahead. They capture the uncertainty associated to planetary-
level perturbations.

• Limited Area Model (LAM), short-range forecasts predict weather in a specific re-
gion at a 1-2 day timescale. The associated uncertainty captured by LAM forecasts
is associated to mesoscale-alpha phenomena (200-2000 km characteristic scales).

• LAM, very short range forecasts produce predictions for a time-horizon of a few
hours. The uncertainty is related to mesoscale-beta (20-200 km) and mesoscale-
gamma (2-20 km) phenomena.
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Medium-range ensemble forecasting

The World Meteorological Organization launched the THORPEX (The Observing
System Research and Predictability Experiment) research initiative in 2004 to estimu-
late the development, usage, utility and accuracy of medium-range ensemble forecasts.
Importantly, it created the The International Grand Global Ensemble (TIGGE) dataset3

[216].
TIGGE contains global medium-range ensemble forecast data produced by several

NWP centers for the purposes of scientific research [217] in an homogeneous format. It
is hosted at the website of the European Center for Medium-Range Weather Forecasts
(ECMWF).4. The ECMWF [218], the Canadian Meteorological Center [219] and the
National Center for Environmental Prediction (NCEP) [220], among others, develop
ensemble prediction systems included in TIGGE. In 2014, the TIGGE-LAM (Limited
Area Model) dataset was also launched with the aim of including regional ensembles on
finer (from 2 to 10 km) grids.

These models run at a coarse resolution of 30 km or larger grid size in order to be
able to forecast the weather at the whole globe for 2 to 10 days because of computational
constraints. Nevertheless, as hardware becomes more efficient and less expensive, the
NWP upgrade their systems in order to increase the resolution of their forecasts.

Limited Area Model ensemble forecasting

By limiting the area and period of interest, Limited Area Models (LAM) are able to
use a higher resolution. Examples of these models are:

• The MOGREPS [221] ensemble (which contains both a global and a LAM model),
developed by the UK Met Office. It is a 10-member ensemble that relies on per-
turbation of the initial conditions and the model physices.

• The SREPS [222] ensemble from the Spanish meteorological service AEMET,
which combines five different LAM models (with a 25 km horizontal × 40 ver-
tical levels resolution) with five different initial and boundary conditions for a
total of 25 ensemble members that predict up to 72h.

• The Norwegian Meteorological Institute’s LAMEPS [223] is a 21-member ensem-
ble that has a 28 km horizontal × 31 vertical levels resolution with the aim of
forecasting precipitation in northern Europe in a time horizon of 0 to 3 days.

• The COnsortium for Small-scale MOdelling’s COSMO-LEPS [224] is a 16-member
ensemble with a 10 km horizontal resolution and 40 levels in the vertical that is
based on a downscaling of the global ECMWF ensemble runs.

3http://tigge.ecmwf.int/documents/
4http://apps.ecmwf.int/datasets/

http://tigge.ecmwf.int/documents/
http://apps.ecmwf.int/datasets/
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• Météo France’s Prévision d’Ensemble ARPEGE (PEARP) [225] is an EPS based
on the ARPEGE deterministic model. It has a variable horizontal resolution that
allows it to be more accurate over France and combines multiphysics and initial
condition perturbations.

• The GLAMEPS (Grand Limited Area Model Ensemble Prediction System) is a
pan-European EPS [226] in development resulting from the cooperation of the
HIRLAM (The High Resolution Limited Area Model) and ALADIN (Aire Limitée
Adaptation Dynamique Développement International) [227] consortia. It combines
runs from a variant of the ECMWF EPS, HIRLAM and ALADIN models ran by
different countries in order to produce a 52-member short-range high-resolution
EPS.

Limited Area Models often focus on land regions in order to study the weather in
areas of greater impact on human activities; as a consequence, their oceanic and maritime
coverage is often limited. Therefore, as discussed in Section 1.4.1, we will employ global
ensembles that allow us to model long oceanic flights (those that are most impacted
by wind uncertainty) despite the higher resolution offered by LAMs. We employ the
publicly available low-resolution output of these forecasts, which are run between 2 or 4
times a day (depending on the center), have a spatial resolution of 0.5 degrees of latitude
and longitude (and 9 isobaric levels, plus the surface fields) and a temporal step size of
6 hours, while having a range of up to 16 days.

The relevant variables for our purposes are the values at isobaric levels of the tem-
perature T , the geopotential height H and the zonal and meridional components of the
wind vw. These fields will be spatially interpolated through cubic b-splines in order to
produce a continuous and smooth field that can be employed in optimal control.

3.3 Convection

Convection occurs when the stratification of the atmosphere breaks down due to the
presence of convective instability, with the formation of tower clouds that easily reach
the tropopause. It is observed over a wide range of spatial and temporal scales [228]:

• At annual time periods and planetary-length scales, convection is modulated by
meteorological events governed by astronomical and oceanic forcings, such as the
Intertropical Convergence Zone (ITCZ), the monsoonal circulations and the El
Niño Southern Oscillation (ENSO).

• At the synoptic scale and middle latitudes, Rossby waves produce low and high
pressure systems with length scales from 1000 to 6000 km and durations on the
order of one or two weeks. While high pressure systems tend to produce a stable
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stratification of the atmosphere that inhibits convection, low pressure systems tend
to feature convection along cold, warm and occluded fronts and instability lines
[229].

• At the mesoscale, we can find convective phenomena with characteristic lengths
of 10 to 1000 km, such as isolated storms, squall lines, convective complexes and
tropical cyclones, that can be embedded in bigger structures. [230].

While planetary and synoptic scale phenomena can be forecasted with global EPS
[217, 231], these forecast systems lack the spatiotemporal resolution to resolve mesoscale
phenomena. LAM EPS products can be employed at the mesoscale [226, 232], but they
are not yet able to forecast individual cells with greater accuracy than nowcasts5 based
on extrapolation.

Therefore, it is not possible to model individual convective cells at the planning hori-
zon, since the temporal distance between the planning time and the potential convective
weather encounter is in the order of several hours, which is greater than the range at
which nowcasting is accurate (1 or 2 hours, depending on the size of the convective
phenomena). We describe an alternative approach in Section 3.3.1.

At the tactical horizon, where we consider storm encounter scenarios on the sub-hour
timescale, it is useful to employ a nowcasting system based on extrapolation instead of
an NWP product. We employ the RDT system for this purpose, which we describe in
Section 3.3.2.

3.3.1 Planning

While it is not possible to forecast the precise location of individual thunderstorm
cells at the planning horizon, it is possible to identify higher regions where the conditions
for convection are met, even if the precise location within that region where convection
will trigger is not known. We can perform such an identification in a probabilistic
manner, as described in [4].

We define a function ctp(φ, λ, t) : [−90, 90]× [−180, 180]×R→ [0, 1] that represents
the probability that the conditions for convection are met at the corresponding point
in space and at time t, employing the forecasts available at planning time tp. In order
to compute this indicator, we make use of two variables included in the high-resolution
ECMWF forecast:

• The total totals index (TT), which itself is the sum of two components: the vertical
totals index (VT), defined as the temperature differential between the 850 hPa

5Within a meteorological context, “nowcasting” refers to forecasting for short ranges -6 hours at
most, according to the WMO- at the mesoscale -weather phenomena of sizes between a few kilometers
and a few hundred kilometers-, and relying more on extrapolation of current sensor data -radar echoes,
mainly- than on NWP techniques.
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and the 500 hPa levels, and the cross totals index (CT), the difference between
the dewpoint temperature at 850 hPa and the temperature at the 500 hPa level.
Higher values of TT imply higher intensity and likelihood of convective activity:
some convective cells can appear at TT values of 45 K, while values higher than
50 K imply high probability of strong convective activity.

• The convective precipitation (CR) indicator, which represents the forecasted amount
of precipitation coming from convective clouds.

Given thresholds TTTH and CRTH, we define ctp at a given point (φ, λ, t) as the
fraction of the members where both of the two variables exceed their thresholds. Thus,
ctp is an indicator that can be computed at the planning horizon to inform the flight
planning process.

3.3.2 Tactical

At a tactical horizon, prediction is usually performed in the form of deterministic
nowcasts. Instead of NWP based methods, thunderstorm nowcasting has been tradi-
tionally based on extrapolation of radar echoes [233], which has been improved by the
usage of satellite data and Doppler radars. This is due to the fact that extrapolation is
more effective than NWP at short timescales (1 to 2 hours). Nonetheless, the quality of
extrapolation nowcasts degrades rapidly as the forecasting horizon increases (and par-
ticularly so for smaller convective cells). One extrapolation based nowcasting system of
particular interest for aviation is the Corridor Integrated Weather System (CIWS)[234],
which covers the Conterminous United States (CONUS) and is in use by the FAA.

More recently, extrapolation based nowcasting methods have started to include NWP
forecasts in order to improve their accuracy beyond the 1 to 2-hour mark, where the
statistical skill of extrapolation techniques in nowcasting drops below that of NWP
forecasting due to the characteristic timescales of convection initiation, growth and decay
[235, 236]. These combined systems blend the extrapolation and a high-resolution NWP
forecast whose initial conditions have been improved by data assimilation. By placing
higher weight in the extrapolation for short horizons and the NWP forecast for longer
horizons, it is possible to combine the strengths of both approaches. One such combined
system, designed for aviation purposes, is Consolidated Storm Prediction for Aviation
(CoSPA) [237]. It integrates CIWS data with forecasts from the National Oceanic
and Atmospheric Administration (NOAA) and the National Center for Atmospheric
Research (NCAR). Additionally, the trend towards increasing computational power has
increased the interest in higher resolution, convection-permitting NWP forecasts in the
last years. In [238], the AROME ensemble forecast from Météo-France is employed in
conjunction with statistical post-processing techniques in order to forecast reflectivity
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(a variable that is highly correlated to convective weather hazards) in a probabilistic
fashion. Nevertheless, the statistical performance of such blended systems is still limited
and research is ongoing at meteorological centres around the world to improve in this
aspect.

A different trend is the study of thunderstorm forecasting with data-driven methods
with or without extrapolation, eschewing the use of NWPmodeling. In [239], the authors
conducted a characterization of the uncertainty in the movement of thunderstorms, as
detected by a radar-based system, for usage in aircraft routing problems. Approaches
to convection forecasting based on machine learning are also starting to be employed;
for example, classifiers with Support Vector Machines (SVM) [240] or predictors with
neural networks[241].

Finally, an alternative aviation-oriented approach focuses on analyzing and fore-
casting “weather avoidance fields”, i.e., regions of space that pilots will try to avoid.
This can be performed by using statistical analysis to identify relationships between
processed convection-related meteorological variables and weather-caused deviations of
aircraft from the planned route. An important system of this kind is the Convective
Weather Avoidance Model (CWAM) [242, 243, 244], covering the CONUS. The CWAM
assigns a probability of deviation to each point in space according to spatially filtered
values of the Verrtically Integrated Liquid (VIL) metric and the difference between the
flight altitude and the echo top of the storm. CWAM has been extensively studied and
employed in US-based ATM research, but no model of this kind has been developed to
the same extent for other regions of the world. Similarly, the work in [245] develops
probabilistic deviation thresholds based on the NCWF-6 convective forecasts.

A different approach is taken in [246]; instead of employing flown trajectories as
data source, a forecast-based scenario is presented to pilots, who are then asked to
design avoidance trajectories in order to characterize pilot behaviour. It was found that
pilots are willing to take more safety margins when it is easy to do so and fly closer
to the storms when avoidance is difficult. The authors conclude that there might be a
trade-off between efficiency and comfort that could be derived empirically.

In order to address the convective avoidance in Europe, we employ the RDT product.
RDT is one of the products of the Satellite Application Facility on support to Nowcast-
ing and Very Short-Range Forecasting (NWCSAF) consortium, participated by several
European National Weather Services. It uses imagery collected from the SEVIRI instru-
ment installed aboard the geostationary Meteosat Second Generation (MSG) satellites,
with a horizontal resolution of 3 km, in order to characterize convective systems in an
area around Europe (or another region with MSG coverage) every 15 minutes. The RDT
system identifies convective cells and describes them as polygons on a latitude-longitude
map in an object-oriented approach, while also determining certain attributes of the
cells. The algorithm at the core of RDT operates in three steps:
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Figure 3.8: Convective systems over Europe at the indicated date, as identified by the RDT
product.

• In first place, an identification of cells corresponding to cloud systems is performed
using the infrared brightness temperature channel from the SEVIRI data. It iden-
tifies the cloud towers from the local minima of the infrared brightness temperature
and then analyzes the local temperature pattern in the vicinity of the cloud tower
to determine an adaptive temperature threshold that is employed to determine the
extent of the cloud system.

• In second place, successive analyses are compared with a tracking algorithm that
employs overlap and correlation methods in order to match previously determined
cells with the newly identified objects and store their evolution and trajectories;
this information is employed to generate new estimates of the speed and direction
of the cells. Cloud splitting and merging events are also handled at this stage.

• Finally, a discrimination method is employed to distinguish convective objects
from other cloud cells, which are much more numerous. It relies on data from
multiple infrared and vapour channels and uses both spatial characteristic and tem-
poral variations and trends. There parameters are stored in a learning database,
which is used to train a statistical model that employs lightning occurrence data
from the Météorage and EUCLID networks as ground truth.
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The RDT output contains a list of the identified convective objects, along with
characteristics such as the perimeter, the speed and direction of the motion or the cloud
top pressure. One parameter of particular interest for our analysis is the phase of the
convective cell, which classifies thunderstorm systems into five categories: triggering,
triggering from split, growing, mature and decaying.

These parameters (in particular, the perimeter, speed and direction) can be employed
to extrapolate the position of the storm in a deterministic manner (indeed, RDT output
includes extrapolated nowcasts generated in this fashion). However, this extrapolation is
deterministic and doesn’t take into account the error inherent to the nowcast. Therefore,
in Chapter 7 we will build a probabilistic nowcast based on the deterministic output
generated by RDT.



CHAPTER

FOUR

Robust Optimal Control

Robust flight planning belongs to a class of engineering problems that cannot be solved
in a practical sense with an open loop optimal control scheme, whether deterministic or
stochastic. Therefore, it is necessary to develop a more general robust optimal control
framework in order to build a methodology to optimize flight plans under uncertainty.
In this chapter, we introduce such a formulation, which was first presented in [1, 12].

The proposed scheme rests on two pillars. The first one is the concept of state tracking,
which allows part of the uncertainty in the dynamics to be transferred to the controls
instead of “tracked” state variables; it is described in Section 4.1. This arrangement
allows us to define optimal control problems in Section 4.2 whose solution can be em-
ployed in practice where open-loop trajectories are not desirable. The second pillar is a
stochastic quadrature rule (Section 4.3), which is the denomination we employ for any
scheme that discretizes the continuous probability distribution of the uncertain param-
eters into a number of finite discrete scenarios with associated weights. By employing a
stochastic quadrature rule, the probabilistic trajectory can be discretized into a trajec-
tory ensemble composed by multiple deterministic trajectories corresponding to each of
the scenarios, as we describe in Section 4.4. The trajectory ensemble allows us to define
a deterministic optimal control problem that approximates the robust optimal control
problem (Section 4.5); this problem can then be solved with direct methods. Finally, in
Section 4.6 we discuss an alternative formulation, based on feedback policies instead of
state-tracking, that can be solved with the same tools.

Figure 4.1 illustrates the structure of the chapter, as well as the relationships between
these concepts.

75
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Figure 4.1: The robust optimal control methodology.

4.1 The State-Tracking Formulation

We start from a dynamical system represented with an RDE, as described in Sec-
tion 2.5.2. An RDE is composed by a differential equation (Equation 4.1), the equality
constraints (Equation 4.2) and the inequality constraints (Equation 4.3):

ẋ =f(x, z,u, ξ, t) (4.1)

h(x, z,u, ξ, t) = 0 (4.2)

gL ≤g(x, z,u, ξ, t) ≤ gU (4.3)

In this setting, a realized trajectory is completely determined by two elements:

• The realization of the uncertain parameters ξ.

• The control or guidance law that determines the value of the controls u at each
point in time.
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One possibility is to model the control law as a fixed control sequence, to be de-
termined by the optimization process; i.e. the controls would only be dependent on
time u = uF (t) and they would be equal in every scenario. This concept represents
an “open-loop” scheme in practice, and it has been explored in previous literature that
employs scenario-based approaches [48, 50, 51].

This “open-loop” formulation does not, however, represent a scheme that can be
employed in practice for all general dynamic optimization problems. The main reason
is that a fixed control law transfers all the uncertainty in the dynamics to the states
according to the shape of the function f . This drift in the state space leads to multiple
potential drawbacks:

• If the dynamical system is unstable, the trajectories might diverge towards unde-
sirable regions of the state space.

• If the system needs to reach certain final conditions or some of the states need
to follow unique trajectory, the state-space drift could make such a requirement
infeasible.

• Similarly, if the cost functional places a heavy weight on diverging trajectories, the
state-space drift leads to high efficiency losses.

In the context of trajectory planning for commercial aircraft, the second drawback
is critical: not only we must enforce arrival of the aircraft at a fixed set of coordinates,
but the horizontal path of the route must be unique under current and future concepts
of operations. In addition, the airspeed schedule is nowadays assumed to be fixed, too.

A possible alternative, discussed in Section 4.6, is to replace the fixed control sequence
by a feedback policy, i.e., a function K : Rnx ×R→ Rnu such that the controls at every
instant and scenario are determined by the relationship:

u(ω, t) = K(x(ω, t), t) (4.4)

However, this concept is not practical for ATM in the short-to-medium term, as
it would require a paradigm shift towards a concept of operations based on “dynamic”
flight plans. This would demand new Flight Management System (FMS), ATC and CNS
technology built on top of this concept, as well as expensive retraining of controllers and
other personnel.

Therefore, instead of looking for an optimal control or policy, then, we will look
for an optimal guidance: we designate some of the state variables as “tracked” and
we replace the unique controls uF (t) that are applied identically in all scenarios by
scenario-specific controls u(ω, t). These controls attain the values that ensure that the
tracked states follow a unique trajectory for all possible values of the random variables,
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as long as it is feasible within the dynamics and constraints of the problem and the
random variables are bounded. This is appropriate only for practical problems in which
the actual system has low-level controllers that can track the desired trajectory in real
time at a shorter timescale than that of the optimal control problem. In our practical
context (long-range trajectory planning), the autopilot can compute the controls that
are needed for the aircraft to follow a route at the calculated airspeeds and altitudes,
and the omission of the short-term control dynamics (by assuming that the states are
tracked exactly) does not introduce a significant error in performance.

We define the number of “control degrees of freedom” of the dynamical system as
d = nz + nu − nh. Let qx ≤ min{nx, d} be the number of tracked states; without loss of
generality, we can assume that the tracked states are the first qx states (rearrange the
state vector otherwise), i.e.

x =
[
x1 . . . xqx xqx+1 . . . xnx

]T
=
[

xq
xr

]
(4.5)

where xq is the tracked part of the state vector and xr is the untracked part. Let In
be the identity matrix of shape n× n and 0n1,n2 be the zero matrix (i.e. a matrix with
zeroes in all its entries) of shape n1 × n2. We define the matrix Ex ∈ Rqx×nx as

Ex =
[
Iqx 0qx,nx−qx

]
(4.6)

This matrix transforms the state vector into the “tracked states” vector xq = Exx
that contains only the states whose evolution is equal in all scenarios. In general, other
combinations of states (represented by a general full-rank tracking matrix Ex that is not
built as we have described, or even an analogous nonlinear transformation Ex(·)) could
also be tracked.

As emphasized earlier, controls are no longer unique for all scenarios. However, in
order to completely determine the value of the controls at each moment, we need to
close the remaining d− qx degrees of freedom. We can do that by selecting qu controls
and qz algebraic variables to be equal in all scenarios (as in the “open-loop” problem),
as long as qx + qu + qz = d. In analogous fashion as Ex, we can define the tracking
matrices Ez and Eu in order to select the tracked algebraic variables and controls. The
tracking scheme is then completely defined by the tuple {qx, qz, qu} and a rearranging
of the dynamic system in the manner described above (i.e. tracked variables before
untracked variables).

With the aid of the tracking matrices, we can now define the tracking conditions
(which apply almost surely, i.e., with probability one):

Ex(x(ωi, t)− x(ωj , t)) = 0, ∀t, ∀ ωi, ωj ∈ Ω,

Ez(z(ωi, t)− z(ωj , t)) = 0, ∀t, ∀ ωi, ωj ∈ Ω,

Eu(u(ωi, t)− u(ωj , t)) = 0, ∀t, ∀ ωi, ωj ∈ Ω

(4.7)
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The tracking conditions enforce equality in the tracked variables between realizations:
note that Ex(x(ω1, t) − x(ω2, t)) is the vector of differences between the tracked states
in outcome ω1 and the tracked states in outcome ω2. The other two conditions are
analogous tracking conditions for the dependent variables and the controls.

For an arbitrary dynamical system with uncertain parameters, not every tracking
scheme of this form is necessarily feasible. Indeed, it is trivial to build examples where
there are no values of the untracked controls and algebraic variables that fulfill the
dynamic equations along a tracked trajectory for certain values of the uncertain param-
eters, or examples where there are several or infinite values that do (therefore leaving
the controls undetermined during operation of the system). We discuss this condition
for linear systems in Appendix A.

Note that the “open-loop” robust control formulation employed in [48, 50, 51] and
[247, Chapter 2] constitutes a special case of this formulation, with qx = qz = 0.

4.2 Definition of the Tracking Problem

Let E[·] be the expectation operator associated to the probability space (Ω,F ,P).
We define the terminal cost or “Mayer term” Φ : R× R× Rnx × Rnx → R, the running
cost or “Lagrange term” L : Rnx × Rnz × Rnu × Rnξ × R → R. We define the cost
functional to minimize as:

JR = E
[
Φ(t0, tf ,x(t0),x(tf )) +

∫ tf

t0

L(x, z,u, ξ, t)dt
]

(4.8)

We define the initial conditions function Ψ0 : Rnξ × R → Rnx−qx . This equation
specifies the value of the untracked states as a function of the uncertain parameters,
therefore allowing for uncertainty in the initial conditions:

xr(ξ, t0) = Ψ0(ξ, t0) (4.9)

If the initial conditions are known with certainty (as we will assume in Chapter 5), then
Ψ0(ξ, t0) = xr,0.

We also define the function Ψ : R×R×Rnx ×Rnx → R that contains the remaining
boundary conditions:

E [Ψ(t0, tf ,x(t0),x(tf ))] = 0 (4.10)

While these conditions are imposed in average, the ones that depend only on tracked
states collapse to boundary conditions that are imposed exactly (as the value of the
tracked states at the endpoints is unique); otherwise, they remain probabilistic con-
straints.
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The objective JR and the boundary conditions Ψ are written in terms of mean
value, but they can be easily generalized to other statistics under the expected value
formulation. For example, the variance of a function G(ξ) can be written as E[(G −
E[G])2] = E[G2]− E[G]2 using expected values.

We also group the differential-algebraic equations and constraints (2.37) (2.38) (2.39):

d

dt
x = f(x, z,u, ξ, t),

h(x, z,u, ξ, t) = 0,

gL ≤ g(x, z,u, ξ, t) ≤ gU

(4.11)

The robust optimal control problem with tracking (ROCT) can now be defined as:

minimize JR(4.8)

subject to differential-algebraic equations (4.11)

boundary conditions (4.10)

tracking conditions (4.7)


(ROCT)

4.3 Stochastic Quadrature Rules

In order to solve Problem (ROCT), we will approximate the uncertain parameters
with a discrete probability distribution. We define a “stochastic quadrature rule” (SQR)
as a procedure that generates a finite set of quadrature points {ξk}, k ∈ {1, . . . , N} and
weights {wk}, k ∈ {1, . . . , N}, such that we can build an approximation1 to a stochastic
integral I = E[G(ξ)] =

∫
G(ξ)dP with the sum:

QG =
N∑
k=1

wkG(ξk) (4.12)

where G(ξ) is a well-behaved function. Basic statistical quantities, such as aver-
ages and variances, can be obtained with this integral by the corresponding function
choices2. There are a number of approaches with different approximation techniques
that can provide a stochastic quadrature rule; depending on the problem and the de-
sired approximation precision, different SQRs might be best. The ideal SQR can reach
the desired approximation accuracy with a low N , because the size of the discretized
robust optimal control problem grows linearly onN (as it can be observed in Section 4.5).

1Naturally, we expect the discrete approximation to converge to the true value as N →∞
2e.g. the variance of γ = G(ξ) can be computed as

E[γ2]− (E[γ])2 =
N∑

k=1

wkG(ξk)2 −

(
N∑

k=1

wkG(ξk)

)2

.
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As an example, consider Monte Carlo techniques. In this setting, the points ξk are
randomly sampled from the probability distribution and weighted equally (wk = N−1).
More advanced alternatives have been proposed in the literature; a brief summary has
been provided in Section 2.5.4.

In certain practical settings, it might be the case that the uncertain parameters
are already characterized as a discrete distribution: for example, if they are empirically
estimated by a discrete set of measurements or simulated from a relatively small number
of scenarios. EPS forecasts can be classified in this latter category, and we therefore use
them “as given” with no other preprocessing (with equal weights wk = N−1 for each
member).

4.4 The Trajectory Ensemble

Let xq(t) : R → Rqx define a trajectory for the tracked states, and zq(t) and uq(t)
analogously. Suppose an SQR has been chosen, with a number of points N . For each
one of these points ξk, the tracking trajectory (xq, zq,uq)(t) defines a unique trajectory
given a full set of initial conditions; we will now collect every one of these N trajectories
in a trajectory ensemble. We define the trajectory ensemble associated to a tracking
trajectory (xq, zq,uq)(t) as the set of trajectories {(xk, zk,uk)(t)} with k ∈ {1, . . . , N}
such that the trajectory k is generated by the initial conditions xk(t0) = x0 and the
tracking trajectory with ξ = ξk, i.e.

d

dt
xk = f(xk, zk,uk, ξk, t)

h(xk, zk,uk, ξk, t) = 0

gL ≤ g(xk, zk,uk, ξk, t) ≤ gU
Exxk(t) = xq(t)

Ezzk(t) = zq(t)

Euuk(t) = uq(t)

(4.13)

Note that the last three equations equate the tracked variables to their value in the
tracked trajectory and thus take the place of the tracking conditions.

We can now build an augmented dynamical system that comprises all the trajectories
in the ensemble, whose state (xE ∈ RnxN ), control (uE ∈ RnuN ) and algebraic (zE ∈
RnzN ) vector contain the state, control and algebraic vectors of all the trajectories in
the trajectory ensemble:

xE =


x1
...

xN

 ; zE =


z1
...

zN

 ; uE =


u1
...

uN

 (4.14)
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We define the differential equation, algebraic equations and inequality constraints of
this augmented dynamical system as:

fE(xE , zE ,uE , t) =


f(x1, z1,u1, ξ1, t)

...
f(xN , zN ,uN , ξN , t)

 (4.15)

hE(xE , zE ,uE , t) =


h(x1, z1,u1, ξ1, t)

...
h(xN , zN ,uN , ξN , t)

 (4.16)

gE(xE , zE ,uE , t) =


g(x1, z1,u1, ξ1, t)

...
g(xN , zN ,uN , ξN , t)

 (4.17)

Note that, while this augmented dynamical system represents (approximately) a
system with uncertainty, it is a deterministic system. This means that we can use it to
formulate a deterministic optimal control problem that approximates Problem (ROCT).

4.5 Formulation of the Discretized Problem

We now proceed to build such a deterministic approximant to Problem (ROCT),
which we will call DROCT (Discretized ROCT). Using the trajectory ensemble and the
SQR, we define the Mayer and Lagrange terms of the Problem (DROCT) as follows:

JE = ΦE(t0, tf ,xE(t0),xE(tf )) +
∫ tf

t0

LE(xE , zE ,uE , t)dt (4.18)

ΦE(xE(t0),xE(tf )) =
N∑
k=1

wkΦ(xk(t0),xk(tf )) (4.19)

LE(xE , zE ,uE , t) =
N∑
k=1

wkL(xk, zk,uk, ξk, t) (4.20)

and discretize the boundary conditions as

ΨE(t0, tf ,xE(t0),xE(tf )) =
N∑
k=1

wkΨ(t0, tf ,xk(t0),xk(tf )) (4.21)

For concise writing of the discretization of the tracking conditions (4.7), we will
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define the matrix ENx ∈ Rqx(N−1)×nxN as:

ENx =


Ex

. . .
Ex



Inx −Inx

Inx −Inx
. . . . . .

Inx −Inx

 (4.22)

ENz ∈ Rqz(N−1)×nzN and ENu ∈ Rqu(N−1)×nuN can be defined in analogous fashion.
These matrices map the ensemble state vector to the differences in the tracked states
between trajectories.

Making use of Equations (4.13) - (4.17) as well as Equations (4.18) - (4.22), we can
complete now the formulation of the deterministic approximant:

minimize JE

subject to ẋE = fE(xE , zE ,uE , t)

hE(xE , zE ,uE , t) = 0

IGgL ≤ gE(xE , zE ,uE , t) ≤ IGgU
ENx xE = 0

ENz zE = 0

ENu uE = 0

ψE(t0, tf ,xE(t0),xE(tf )) = 0



(DROCT)

where IG = [Ing . . . Ing ]T ∈ RngN×ng .
This optimal control problem can now be solved with standard deterministic direct

methods. From the point of view of implementation, defining and modeling the tracked
variables in every scenario is not necessary as they are equal; as a consequence, im-
plementation of the tracking constraints ENx xE = 0, ENz zE = 0 and ENu uE = 0 can
also be omitted. The resulting formulation constitutes the “compact form” of Prob-
lem (DROCT).

Note that the size of this problem is proportional to both N and the dimension of
the original dynamical system minus the number of tracked variables (if N � 1), with
the number of variables being O(N(nx +nh)) (in the compact form) and the number of
function evaluations (of f , g, h and L) per node being O(N(nx + nh + ng + 1)). That
is, a DROCT is approximately N times larger than a similar deterministic problem, but
it preserves the linear scaling of the problem size on the dimension of the state space
that represents a core advantage of numerical optimal control. Therefore, it avoids the
“curse of dimensionality”, i.e., the exponential scaling of the problem size and cost on
the dimension of the state space that appears in dynamic programming.

While we will not do so, it is possible to partially parallelize this problem in order to
speed it up. The computational cost of an optimal control problem solved through direct
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collocation can be divided in function evaluations (which includes the computation of
derivative matrices) and NLP algorithm time. The former can be naturally parallelized
in a scenario-wise fashion, but it is harder to replace NLP solvers by parallel versions;
depending on which of the two parts of the cost dominates, parallelization would be
more or less effective.

Finally, we note that using the SQR we can include higher moments (such as the
variance) in the cost functional, as suggested in Section 4.2.

4.6 Feedback Policies

When the real-world system to be controlled does not enforce the usage of the
tracking framework, a natural election is to employ a general feedback policy in Equa-
tion (4.4). This idea is employed in the closed-loop or policy-based dynamic optimiza-
tion paradigm, using the taxonomy introduced in Section 2.1. A wide range of dynamic
optimization methods, such as dynamic programming, Markov Decision Process opti-
mization, reinforcement learning or linear-quadratic control, can be classified under this
label. However, feedback policies have not been studied in depth within the realm of
general nonlinear, continuous time optimal control.3 In this section, we show how to
use the trajectory ensemble framework to model feedback laws in a form that generates
optimal control problems that can be solved by direct transcription methods.

We start by introducing reference variables y : R → Rny that are equal in all
scenarios and depend on time, y = y(t). These variables are chosen by the control
designer and they can be employed to represent reference values for the states or controls
4. Then, we introduce the feedback law Kp : Rnx ×Rny ×Rnz ×Rnp ×R→ Rnu , which
represents a general parametrized policy with np free parameters that determines the
controls through the following relationship:

u = Kp(x,y, z,p, t) (4.23)

where x = x(ω, t) and z = z(ω, t) represent the scenario-specific realization of the
trajectory, p ∈ Rnp is a vector of parameters and u = u(ω, t) represents the scenario-
specific computed values of the controls at time t. As an illustrative example, consider
a system with a single state x and a single control u. One possible simple choice could
be a linear policy that employs one reference variable y and one parameter p:

u = y + p · x (4.24)
3With the linear law for the coefficient of lift in [247, Chapter 3] representing the main exception,

to the best of the author’s knowledge.
4Because of the general shape of Kp, it is not necessary, in principle, to use these reference variables

as they could be modeled by parametrized functions of time within Kp; for example, as a Lagrange
polynomial interpolation with the node values being represented by some of the parameters p. However,
its usage is convenient from the point of view of clarity and ease of implementation.
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This policy represents a feedback law that can be decomposed into two terms: the
quantity y+ p ·E[x], which represents the value of the control at the average trajectory,
and the proportional term p(x−E[x]), which represents an extra increment or decrement
of the control which is proportional to the difference between the realization of the state
and the average value of the state. Thus, this scheme represents a classical proportional
controller with a changing reference signal and the solution of the equivalent optimal
control problem represents an integrated optimization of the reference trajectory and
tuning of the P controller on a nonlinear system.

Note that other parametrizations of the control law are possible; for example, one
might use an implicit parametrization Ki

p(x,y, z,u,p, t) = 0 or a constraint with di-
mension nu that only relates to the states, thus making the value of the control implicit.
We discuss here only the case of the explicit policy, as it is straightforward to implement
the solution in practice without resorting to a potentially complex process of solving
nonlinear algebraic systems of equations in real time.

The robust optimal control problem with the explicit feedback law can be defined as

minimize J = E
[
Φ(t0, tf ,x(t0),x(tf )) +

∫ tf

t0

L(x, z,u, ξ, t)dt
]

subject to ẋ = f(x, z,u, ξ, t),

h(x, z,u, ξ, t) = 0,

gL ≤ g(x, z,u, ξ, t) ≤ gU
u = Kp(x,y, z,p, t)

E [Ψ(t0, tf ,x(t0),x(tf ))] = 0


(ROCF)

We can now proceed to discretize the problem with the aid of the trajectory ensemble,
in analogous fashion as described in Section 4.5. Define the ensemble policy as:

KE(xE ,y, zE ,p, t) =


Kp(x1,y, z1,p, t)

...
Kp(xN ,y, zN ,p, t)

 . (4.25)

and the discretized version of Problem (ROCF) can be written as:

minimize JE

subject to ẋE = fE(xE , zE ,uE , t)

hE(xE , zE ,uE , t) = 0

IGgL ≤ gE(xE , zE ,uE , t) ≤ IGgU
uE = KE(xE ,y, zE ,p, t)

ψE(t0, tf ,xE(t0),xE(tf )) = 0


(DROCF)
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where JE is defined as in Equations (4.18) – (4.20).
Choosing an appropriate shape for Kp represents the critical research question when

employing this formulation. Clearly, the optimality of the solution depends on the choice
of Kp, as the optimal solution of Problem (DROCF) contains the optimal policy among
those policies that have the same shape at best, but not the optimal policy among arbi-
trary functions. This difference suggests that it would be ideal to use a general function
approximation scheme that could approximate arbitrary functions: Taylor expansions,
polynomial interpolators (with sparse grids in higher dimensions), or even neural net-
works (as it is done in “neuro-dynamic programming” [248]). Nonetheless, most of these
choices could lead to additional issues:

• NLP software is designed to reliably produce good results with continuous, smooth
functions. However, both theory and practice show that some problems have solu-
tions with non-smooth, even discontinuous policies (such as bang-bang solutions).
In addition, most classical function approximation schemes are efficient for smooth
functions but generate problematic approximations to non-smooth functions (such
as the “Gibbs phenomenon”). On the other hand, for some problems it might be
the case that the existence of uncertainty “smooths out” the optimal policy.

• In order to model complex policies, it might be attractive to employ a very flexible
form (such as a neural network). This could generate undesirable local minima;
in addition, they could require a number of parameters that is big relative to the
number of scenarios, thus running into potential overfitting issues where the policy
‘learns’ the discrete scenarios instead of the true, continuous uncertainty. Increas-
ing the amount of scenarios would mitigate this issue, but the computational cost
could become prohibitive; alternatively, some regularization scheme could be em-
ployed, which would require tuning and experimentation that does not necessarily
generalize to other optimal control problems (the “hyper-parameter” question in
machine learning).

• Furthermore, even when employing sparse grids, the number of parameters will
grow quickly in high-dimensional problems when employing a classical function
approximation method, leading to the mentioned issues again.

• The time resolution of optimal control problems is often coarser than the resolution
that would be required to resolve fast control dynamics that might be implied by
the optimal policy, leading to sub-optimal policies unless a fine grid (with its
implications for computational cost) is employed.

As the main focus of this thesis is on the tracking formulation instead of the feedback
formulation, these speculative questions will not be addressed in depth within the scope
of this work and are left for future research to investigate.



CHAPTER

FIVE

Robust Flight Planning

In this chapter, a methodology for optimizing free-route flight plans under wind un-
certainty at the planning horizon (2-3 hours before departure) is proposed. It is based
on the robust optimal control framework introduced in Chapter 4 and the EPS forecasts
described in Chapter 3. By considering the different weather scenarios contained in an
ensemble forecast with the robust optimal control framework, it is possible to design
trajectories that are optimal when considering multiple possible weather scenarios. Fur-
thermore, it is also possible to trade off some average efficiency in order to increase
predictability.

The chapter is divided in two sections. In Section 5.1, we describe the mathematical
construction of the robust flight planning problem. Then, a transatlantic flight planning
scenario is presented in Section 5.2 to demonstrate the proposed method. We show how
the algorithm can produce different flight plans for different airline priorities, and how
these trajectories achieve the desired combinations of objectives.

87
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5.1 Concept

We consider the problem of flight planning at the planning horizon, i.e., 2-3 hours
before departure. At this point, the weather forecasts carry significant uncertainties.
For medium-haul and long-haul flights, in which uncertainty becomes more important
due to the longer flight time, the weather in the latter parts of the flight has to be
forecasted with a higher lead time, which implies that the forecast will have a higher
prediction error.

In order to model the error in the forecast, we rely on EPS forecasts. Within the
robust optimal control framework of Chapter 4, the uncertainty will be represented with
an SQR where each member of the EPS forecast corresponds to a quadrature point. Each
scenario will be weighted equally; if the EPS contains N members, then the weight of
each member is wk = 1/N .

5.1.1 Dynamical Model

As this is a routing problem where turning dynamics become relatively unimportant,
we will work with a 2Dt-m-i model from Section 3.1.4

2Dt-m-i model

State variables: φ, λ, v, m

Control variables: CT , χ

Differential equations:

φ̇

λ̇

v̇

ṁ


=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL)
m

−fc(CT )


with CL = 2mg

ρv2S

With this model, we consider a constant flight level for simplicity, but we will note
that our methodology can be extended to full 4D problems.1 We will also consider the

1Direct methods are flexible enough that they can handle more complex problems; we choose our
assumptions, which are comparable to most of the published routing algorithms, for simplicity.
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constraints from Section 3.1.3 that are related to the airspeed and the thrust limits.
It is advantageous for computational purposes and for clarity of exposition, as we will

explain in Section 5.1.2, to reformulate this dynamical system as a differential-algebraic
system (DAE) with the addition of the ground speed vG as an algebraic variable and
the course ψ as a control variable, linked to the remaining variables by two new equality
constraints (see Figure 5.1 for a graphical explanation ). The reformulated system is
given by:

2Dt-m-ψ model

State variables: φ, λ, v, m

Control variables: CT , χ, ψ

Algebraic variables: vG

Differential equations:

φ̇

λ̇

v̇

ṁ


=



vG cosψ
(RM (φ) + h)

vG sinψ
(RN (φ) + h) cosφ

T(CT )−D(CL)
m

−fc(CT )


Algebraic equations:

vG cosψ

vG sinψ

 =


v cos(χ) + wx

v sin(χ) + wy


with CL = 2mg

ρv2S

The inequality constraints apply in the same fashion as before, with the addition of

vG ≥ 0 (5.1)

to ensure uniqueness of vG and ψ (otherwise, (−v∗G, ψ∗ + π) would produce the same
left-hand side of the algebraic constraints as (v∗G, ψ∗)).
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Figure 5.1: Relationship between airspeed, groundspeed, wind, heading and course.

5.1.2 Coordinate Transformation

In the robust optimal control framework that we have presented, the independent
variable (time) is unique in all scenarios (it varies in the same range). Therefore, the
direct application of the state-tracking formulation would demand the position of the
aircraft to be in a fixed schedule with respect to time in all scenarios, and thus the
groundspeed would be fixed. This implies that, under this concept, the variability
in wind speed would be fully compensated by airspeed modifications, with associated
variations in fuel burn2. There are multiple reasons why this is not convenient in cruise
scenarios3:

• There would be a large spread in the airspeed values between scenarios, resulting
in airspeeds that are inefficiently high or low in the extreme scenarios. Because the
inefficiency of a certain airspeed level is approximately quadratic on the difference
with respect to the optimal airspeed, a high spread in airspeeds leads to low
efficiency in average.

• In some regions with high wind uncertainty, the average airspeed would be reduced
below efficient ranges in order to have sufficient margin of variation for the most
unfavourable scenarios: otherwise, the airspeed in these scenarios would go beyond
the performance envelope.

2In descent scenarios, this is not necessarily the case, as the deviation can be translated into altitude
deviations [249].

3Nevertheless, we will note that this type of solutions can also be obtained with our approach and
the extension presented in Section 5.1.5; the formulation that we will present there generalizes and
includes this kind of fixed-schedule solutions, allowing for intermediate concepts.
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Thus, instead of applying the robust optimal control framework with time as the
independent variable, we will adopt a formulation that is more consistent with cur-
rent flight procedures and Flight Management System (FMS) technology, as they are
not expected to change in the short-to-medium term (even after the introduction of
free-routing). We will employ distance flown along the route (denoted as s) as the in-
dependent variable, because its initial and final value are the same in all scenarios that
follow a unique route. As a consequence, the time t becomes a state variable and the
new dynamical function can be obtained by dividing the time derivatives by ds/dt = vG:

2Dt-s model

Independent variable: s

State variables: φ, λ, v, m, t

Control variables: CT , χ, ψ

Algebraic variables: vG

Differential equations:

d

ds



φ

λ

v

m

t



=



cosψ
(RM (φ) + h)

sinψ
(RN (φ) + h) cosφ

T(CT )−D(CL)
mvG

−fc(CT )
vG

v−1
G


Algebraic equations:

vG cosψ

vG sinψ

 =


v cos(χ) + wx

v sin(χ) + wy


with CL = 2mg

ρv2S

All inequality constraints remain the same as in the untransformed system of differential-
algebraic equations. Note that, by employing vG as an algebraic variable (instead of a
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function of wind, airspeed and heading), it will be computed only once at each node in
the NLP iterations and produce sparser derivative matrices.

5.1.3 Trajectory Ensemble

As described in Section 4.4, the robust optimal control framework requires the for-
mulation of the trajectory ensemble. An ensemble forecast contains a set of ensemble
members, each one defining a different wind forecast (and, therefore, different functions
wx and wy). If the ensemble contains N members, we define N scenarios, each one
having weight wk = 1/N and the wind field that corresponds to the respective member;
our stochastic quadrature rule is, therefore, a simple empirical average. We will write
the compact form of the trajectory ensemble directly.

We choose to track the course ψ and the true airspeed v, i.e., the functions ψ(s) and
v(s) are the same in every scenario (so we do not need to implement scenario-specific
versions). As a consequence of the dynamics of the 2Dt-s model, this implies that the
evolution of the latitude φ is unique (as it only depends on the evolution of the unique
variable ψ) and λ is also unique (as it only depends on φ and ψ). Therefore, the position
variables act like tracked variables too, which is both relevant from the implementation
point of view (because we do not need to create copies of them for each scenario) and
a desired goal (since we want to obtain a unique route). We also define a := dv/ds for
practical purposes, in order to combine the derivative of v and its tracking condition in
a single set of constraints. Its physical interpretation is the slope of the airspeed profile.

Taking advantage of these manipulations, we can define the dynamical system asso-
ciated to the trajectory ensemble with the dynamical function:

dxE
ds

= d

ds



φ

λ

v

t1
...
tN

m1
...

mN



=



cos(ψ)/(RN + h)
sin(ψ)/(RN + h)/ cosφ

a

1/vG,1
...

1/vG,N

fcT1/vG,1
...

fcTN/vG,N



(5.2)

with the control vector:

uE =
[
a ψ T1 . . . TN χ1 . . . χN

]T
(5.3)

the equality constraints:
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vG,1 cos(ψ)
...

vG,N cos(ψ)
vG,1 sin(ψ)

...
vG,N sin(ψ)
a · vG,1

...
a · vG,N



=



v cos(χi) + wy,1
...

v cos(χi) + wy,N

v sin(χi) + wx,1
...

v sin(χi) + wx,N

(T1 −D1)/m1
...

(TN −DN )/mN



(5.4)

and the inequality constraints:

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

M(v) ≤Mmax,

Tidle(v) ≤ Tk ≤ Tmax
0 ≤ vG,k

}
∀k ∈ {1, . . . N}

. (5.5)

5.1.4 Formulation of the Discretized Problem

We will now finish the formulation of the Robust Flight Planning problem by adding
an optimization criterion and boundary constraints. We define two additional scalar
optimization variables: the earliest arrival time t(sf )min and the latest arrival time as
t(sf )max, which together define a “window of arrival”. We also define two user-specified
parameters: the Cost Index CI4, which represents the user’s preferences for reduced
flight time versus reduced fuel burn, and the “dispersion penalty” DP, which represents
the user’s preferences for increased predictability versus average efficiency. We define
the cost functional as:

JRFP = − 1
N

N∑
i=1

mi(sf ) + CI · 1
N

N∑
i=1

ti(sf ) + DP · (t(sf )max − t(sf )min) (5.6)

and the boundary conditions:

(φ, λ, v)(0) = (φ0, λ0, v0),

(φ, λ, v)(sf ) = (φf , λf , vf ),

tk(0) = 0

mk(0) = m0

tf,min ≤ tk(sf ) ≤ tf,max

∀k ∈ {1, . . . N}.
(5.7)

4Whenever not explicitly noted, the cost index CI is given in ($/hr)/(cents/lb).
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The Problem (DROCT) associated to the Robust Flight Planning problem can now
be defined as:

minimize JRFP (5.6)

subject to dynamical equation (5.2)

equality constraints (5.4)

inequality constraints (5.5)

boundary conditions (5.7)


(DRFP)

Note that, with minimal changes to the cost functional and boundary conditions,
similar problems can be solved. For example, finding the fuel-optimal trajectory that
arrives in a specified time window or identifying the required fuel that needs to be loaded
on the aircraft before departure.

5.1.5 Dynamic Airspeed Adjustment

In Section 5.1.4, we have described a formulation whose solution generates a flight
plan that is consistent with current flight procedures and existing FMS and Trajectory
Prediction (TP) technology: a lateral path (that can be discretized to a sequence of
segments delimited by waypoints) and an airspeed profile (that can also be discretized
to a sequence of airspeeds associated to each leg). In this section, we consider a potential
future concept where the airspeed is dynamically adjusted in response to time leads or
lags in order to increase adherence to the predicted flyby times at each point in the
trajectory, and the adjustment is done according to a feedback law that is incorporated
to the flight plan. We will name this concept “dynamic airspeed adjustment” or DASA.

The proposed scheme is consistent with the concept of making small tactical speed
changes5 in order to increase predictability. This idea has been explored as a potential
future ATM system concept; for example, in [250] and related work. Under the “sublim-
inal control” paradigm examined there, pilots or automated systems would implement
tactical speed changes in the interval [-6%, 3%] (under future technology) in order to
reduce the risk of conflicts; this modification would be small enough that it would fall
within the uncertainty observed by the air traffic controller (thus the “subliminal” la-
bel). In the present work, a speed change of a similar magnitude would be individually
triggered by delays or leads following a pre-computed rule instead of a periodic and cen-
tralized sector-wide calculation. Therefore, the impact on conflicts would be indirect,
through increased adherence to the scheduled flyby times (which would allow for earlier
deconfliction).

5Note that, in this work, the rule implemening these speed changes is still computed at the pre-
tactical planning stage.
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The DASA law

We consider a simple control law6:

v(s)− v̄(s) = K · (t(s)− t̄(s)), (5.8)

where v̄(s) is a fixed airspeed schedule, t̄(s) is the expected flyby time at position
s, and K is a constant. This scheme constitutes a control law analogous to a propor-
tional regulator, where the airspeed increments or decrements are proportional to the
accumulated time lead or lag with respect to the expected trajectory. Under this law,
the pilot or the FMS would change the planned airspeed according to the delay or lead
compared to the scheduled times. We will optimize this law jointly with the flight plan
at the planning stage (i.e., the gain K will be a result of the optimization process).

DASA formulation

In Section 4.6, we described the implementation of feedback policies of the form
u = Kp(x,y, z,p, t) among other potential alternative specifications. We will employ
one of such variations, as the variable that is set by a feedback law in this concept is
the airspeed, which is a state and not a control. Note that the airspeed dynamics will
still be taken into account in the optimization problem.

In order to cast the DASA law into this framework, we define a parameter vector
composed by the gain K, i.e., p = [K]; and the reference variables v̄ and t̄ (i.e.y(s) =[
v̄ t̄

]T
). Both K and v̄ are left for the NLP solver to find; however, in order to ensure

that t̄ does indeed represent the average flyby time, we will also introduce a constraint
relating it to the state variables:

t̄ = 1
N

N∑
k=1

tk (5.9)

We can now integrate the DASA law into the framework described in Section 5.1.4 .
Since the airspeed will now be specific to each ensemble member, we do not collapse it
into a single variable; instead, we let v1, . . . , vN be the member-specific airspeeds with
the associated dynamic function:

dvk
ds

= (Tk −Dk)/(mk · vG,k), k ∈ {1, . . . N} (5.10)

We replace the tracking condition on the airspeed by the algebraic condition imple-
menting the control law:

vk − v̄ = K · (tk − t̄), k ∈ {1, . . . N} (5.11)
6Note that v is not a control variable, but the dynamics of airspeed tracking would again happen at

a timescale of much smaller characteristic time than that of the optimal control problem.
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The ensemble dynamical equation is now:

dxE
ds

= d

ds



φ

λ

v1
...
vN

t1
...
tN

m1
...

mN



=



cos(ψ)/(RN + h)
sin(ψ)/(RM + h)/ cosφ
(T1 −D1)/(m1 · vG,1)

...
(TN −DN )/(mN · vG,N )

1/vG,1
...

1/vG,N

fcT1/vG,1
...

fcTN/vG,N



(5.12)

The equality constraints now include the control law:

t̄

vG,1 cos(ψ)
...

vG,N cos(ψ)
vG,1 sin(ψ)

...
vG,N sin(ψ)
v1 − v̄

...
v1 − v̄



=



N−1ΣNk=1tk

v cos(χi) + wy,1(φ, λ, t)
...

v cos(χi) + wy,N (φ, λ, t)
v sin(χi) + wx,1(φ, λ, t)

...
v sin(χi) + wx,N (φ, λ, t)

K · (t1 − t̄)
...

K · (tN − t̄)



(5.13)

The inequality constraints are now all scenario-specific:

vCAS,stall ≤ vCAS(vk) ≤ vCAS,max
M(vk) ≤Mmax

Tidle(vk) ≤ Tk ≤ Tmax
0 ≤ vG,k


∀k ∈ {1, . . . N} (5.14)
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and the boundary conditions now depend on v̄ instead of v (note that the initial
airspeeds are already equated to v̄(0) by the DASA law):

(φ, λ, v̄)(0) = (φ0, λ0, v0),

(φ, λ, v̄)(sf ) = (φf , λf , vf ),

tk(0) = 0

mk(0) = m0

tf,min ≤ tk(sf ) ≤ tf,max

∀k ∈ {1, . . . N}.
(5.15)

Therefore, the uncertainty-discretized robust optimal control with tracking and feed-
back associated to the DASA problem can be defined as:

minimize JRFP (5.6)

subject to dynamical equation (5.12)

equality constraints (5.13)

inequality constraints (5.14)

boundary conditions (5.15)


(DASA)

5.2 Results

We will now proceed to illustrate the method with a flight planning scenario. We
consider a cruise flight from the vertical of New York to the vertical of Lisbon at FL380.
The aircraft is a wide-body twin-engine jet, modeled according to the BADA 4 speci-
fication and with an initial mass of 200 tons. Initial speed is set to 240 m/s and final
speed is set to 220 m/s; for the constant airspeed case, the airspeed is fixed to 240 m/s.
In order to facilitate visualization and understanding, we employ a static weather pic-
ture; nevertheless, the proposed methodology allows for the usage of dynamic weather
forecasts. We employ the 6-hours-lead-time forecast from the Météo France PEARP
ensemble for the 20th of January 2016 at the pressure level of 200 hPa. In this fore-
cast, an area of high uncertainty can be identified, centered around 5 longitude degrees
East of the Azores archipelago. Under these wind conditions, the optimal deterministic
flight plan takes the aircraft straight through this region of high uncertainty; thus, it
represents a useful scenario for our purposes.

We will consider consider three different variants of the analysis. In Section 5.2.1,
we consider a fixed airspeed scenario (equivalent to a routing algorithm). Then, we will
consider the full horizontal dynamics and allow the algorithm to optimize the airspeed
profile as well in Section 5.2.2. Finally, in Section 5.2.3 we study the dynamic airspeed
management concept proposed in Section 5.1.5.

We employ the Python bindings for the CasADi [251] library for NLP modeling and
interfacing and the NLP solver IPOPT [77]. Table 5.1 shows the size of the resulting
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nonlinear optimization problems after direct transcription with 80 time nodes. NLP
CPU time varies depending on the type of problem and the quality of the initial guess,
ranging from a few seconds in the simplest fixed-airspeed cases to a few minutes in the
more complex DASA cases.

# Constant TAS Variable TAS DASA

NLP variables 11144 14104 16912
Equality constraints 11039 14016 16782
Inequality constraints 7565 11437 16877

Number of nonzeros in ...
Eq. constr. Jacobian 57271 88189 115945
Ineq. constr. Jacobian 7849 11673 17113
Lagrangian Hessian 18616 44496 60656

Table 5.1: Problem size.

For the remainder of the Chapter, the units of the DP and CP parameters are
understood to be in the corresponding International System units (i.e. kg/s and kg/m)
whenever they are not mentioned.

5.2.1 Fixed Airspeed

Figure 5.2 displays the geographical routes for different values of the dispersion
penalty DP. We also plot regions of higher uncertainty, which we have defined as√
σ2
u + σ2

v , with σu and σv being the standard deviation of the u and v components
of wind across different members. It can be seen that routes computed with higher DP
tend to avoid the high uncertainty zone in the Atlantic in order to increase predictability,
at the cost of taking a more indirect route that is longer on average.

Figure 5.3 shows the evolution of the groundspeed and the time lead or lag for
different DP settings. Note that each individual line represents the trajectory that
corresponds to an ensemble member and the time lead or lag is measured with respect
to the average flyover time at each point in the route. The groundspeed is different for
each member despite sharing the same airspeed schedule; naturally, this is due to the
spread in wind speeds and directions. It can be seen that the spread in the ensemble
times and ensemble groundspeeds increases markedly when the aircraft crosses the area
of high uncertainty near the destination airport (see Figure 5.2). However, as the DP
setting is increased and the aircraft avoids the areas with highest uncertainty, the spread
in groundspeeds is reduced and, therefore, the time leads or lags are closer together on
arrival.
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Figure 5.2: [Fixed airspeed] Optimal trajectories from New York to Lisbon, for values of DP
from 0 kg/s to 20 kg/s. Higher brightness in the trajectory color indicates lower values of DP.
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Figure 5.3: Groundspeeds and time leads or lags for different DP settings. Time leads and
lags are defined with respect to the average trajectory.
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Finally, Figure 5.4 shows the Pareto frontier of the problem, obtained by solving
problems with different penalties (from DP = 0 kg/s to DP = 20 kg/s). For the maximum
average efficiency case (DP = 0), the time dispersion at the final fix is just above
6 minutes, which is almost halved by the usage of a higher predictability flight plan
(DP = 20 kg/s). This comes, however, at the cost of flying a longer route that takes
10 additional minutes of flight time (corresponding to more than 700 kg of extra fuel
burnt). Nevertheless, a more modest improvement in uncertainty, from 6 minutes to 4.5
minutes, can be achieved at a tenth of the cost (around a minute of extra flight time).
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Figure 5.4: Pareto frontier of the problem.
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Figure 5.5: [Variable airspeed] Optimal trajectories from New York to Lisbon, for values of
DP from 0 kg/s to 20 kg/s and CI = 0 kg/s. Higher brightness in the trajectory color indicates
lower values of DP.

5.2.2 Variable Airspeed

We now proceed to consider variable airspeed profiles. In this case, the cost index
(CI) becomes relevant, as it will have a first-order influence on the average airspeed
(with higher CI settings leading to higher airspeed profiles).

Figures 5.5 and 5.6 show the geographical path of the optimized flight plans for CI =
0 kg/s and CI = 5 kg/s. As in the constant airspeed case, the horizontal profiles of the
trajectories that place a higher weight on reducing uncertainty are farther from the high
uncertainty zone; however, at a higher cost index setting the trajectories will deviate by
a smaller amount due to the higher relative importance of the average flight duration
objective. Figures 5.7 and 5.8 show the geographical path of the optimized flight plans
for varying CI values at fixed values of the dispersion penalty. In the DP = 0 case, it
can be observed that there is a negligible influence of the cost index parameter in the
route: it’s only influencing the airspeed profile, as we shall see shortly. However, at a
high DP value there is an interaction between the two objectives, and we can see again
that higher CI values will lead to solutions that are closer to the deterministic flight
plan.
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Figure 5.6: [Variable airspeed] Optimal trajectories from New York to Lisbon, for values of
DP from 0 kg/s to 20 kg/s and CI = 5 kg/s. Higher brightness in the trajectory color indicates
lower values of DP.
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Figure 5.7: [Variable airspeed] Optimal trajectories from New York to Lisbon, for values of
CI from 0 kg/s to 5 kg/s and DP = 0 kg/s. Higher brightness in the trajectory color indicates
lower values of DP.
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Figure 5.8: [Variable airspeed] Optimal trajectories from New York to Lisbon, for values of
CI from 0 kg/s to 5 kg/s and DP = 20 kg/s. Higher brightness in the trajectory color indicates
lower values of DP.

Figure 5.9 shows the speed profiles for different values of the CI and DP parame-
ters. As expected, trajectories optimized for a higher CI tend to feature higher speeds.
However, there is another relevant difference between trajectories: as the penalty in
uncertainty grows, the optimal airspeed when the aircraft crosses uncertain regions in-
creases. We attribute this result to the idea that, by flying at a higher speed, the
relative importance of the wind on the groundspeed is reduced7. We show the ground-
speeds and time leads or delays of three scenarios in Figure 5.10; the pattern is similar
to the constant airspeed one (see Figure 5.3), with the addition of the airspeed profile.

These airspeed changes reduce uncertainty more efficiently than direct avoidance, as
it can be observed in Figure 5.11. For a given CI, there are two regions in the locus of
the solutions for different DP values. Reducing arrival time dispersion in the left branch
is cheaper (around 100 kg when reducing the arrival window size from 5 minutes to 4.5
minutes) than in the right branch (around 300 kg when reducing from 4 minutes to 3.5
minutes).

7Consider the following illustrative example: the along-track wind can take one of two constant
values, w1 or w2, on a region where an aircraft flies a distance x at the airspeed v. The difference in

arrival times is ∆t = x
|w1 − w2|

v2 + (w1 + w2)v + w1w2
, which is decreasing on v.
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Figure 5.9: True Airspeed profiles for different DP and CI settings.
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Figure 5.10: Groundspeeds and time leads or lags for different DP settings and CI = 0 kg/s.
Time leads and lags are defined with respect to the average trajectory.
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Figure 5.11: Pareto frontier and locus of the solutions of the variable airspeed profile case.

5.2.3 Dynamic Airspeed Adjustment (DASA)

Finally, we discuss the results of the Dynamic Airspeed Adjustment (DASA) concept
introduced in Section 5.1.5. The results of the optimization suggest that, in this case, it
is cheaper to reduce uncertainty by increasing the feedback strength K (and, therefore,
absorbing some uncertainty in airspeed instead of groundspeed) rather than modifying
the geographical path: Figure 5.12 shows that geographical paths are very similar.

Figure 5.13 shows the evolution of the state variables for different values of DP. The
lowest predictability scenario has a similar profile to the analogous case in Figure 5.10;
however, as DP increases, some of the wind uncertainty starts being compensated by
airspeed variations instead of being fully passed onto the groundspeed. As a consequence
of the TAS dispersion, the fuel burn shows more dispersion as arrival time uncertainty
is decreased; we illustrate this result in Figure 5.14.
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Figure 5.12: [DASA] Optimal trajectories from New York to Lisbon, for values of DP from
0 kg/s to 20 kg/s and CI = 0 kg/s. Higher brightness in the trajectory color indicates lower
values of DP.
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Figure 5.13: [DASA] Groundspeeds and time leads or lags for different DP settings and CI
= 0 kg/s. Time leads and lags are defined with respect to the average trajectory.
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Figure 5.14: Time uncertainty - fuel uncertainty tradeoff. The range of a variable is defined
as the difference between its maximum value over all scenario and its minimum value.

Figure 5.15 shows the scheduled TAS profiles for different values of CI and DP.
As it can be expected, the airspeed increases as CI increases, therefore putting more
importance on reducing flight time than fuel burn. Another apparent feature of these
profiles is that the reference airspeed decreases when crossing a region of high uncertainty
instead of increasing, as in the variable airspeed case. This can be attributed to the result
that higher predictability trajectories will now feature higher gains K (see Figure 5.17)
and thus the airspeeds will be more spread when crossing a region of high uncertainty
(recall that, under DASA, ∆v = K∆t). Therefore, in order to prevent the airspeeds
in the most unfavourable members from rising to a level that is either too inefficient or
even outside the flight envelope, the reference airspeed needs to be lower.
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Figure 5.15: True Airspeed profiles for different DP and CI settings.

Figure 5.16 shows that the Pareto frontiers for different values of the arrival time
dispersion are very close to one another (compare with Figure 5.11): as discussed earlier,
the reduction of uncertainty through dynamic airspeed adjustment is cheap enough (in
average terms) that the impact on average efficiency is minimal. The main cost is now
an increase in fuel burn dispersion (see again Figure 5.14).

Finally, we show the magnitude of the gainsK in Figure 5.17. As expected, increasing
DP has the effect of increasing the strength of the feedback in order to reduce the
temporal divergence with respect to the reference schedule (otherwise, the gain will
be low as deviating from the most efficient airspeed is inefficient in general). We can
observe that an increase of the CI setting results in a lower gain: as average flight time
is prioritized, uncertainty reduction is less important in relative terms.
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Figure 5.16: Pareto frontier and loci of the solutions of the dynamic airspeed management
case.
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Figure 5.17: Gain K for varying DP and CI parameters.





CHAPTER

SIX

Flight Planning under Convection

Convection represents an important meteorological source of uncertainty in flight
plans, as discussed in Chapters 1 and 2. At the planning horizon, it is often impossible
to forecast the specific location, timing and evolution of individual convective events
with enough accuracy to produce highly predictable flight plans in convective scenar-
ios. However, the necessary conditions for convection can be identified in probabilistic
fashion at the planning stage, and this information can be integrated into the Robust
Flight Planning framework presented in Chapter 5. Building and demonstrating such
an extension is the purpose of the current chapter.

This chapter is divided in two parts:

• Section 6.1 explains the extension of the Robust Flight Planning framework for
including convection as an uncertainty source.

• Section 6.2 demonstrates the described approach in a planning scenario under both
constant airspeed and variable airspeed paradigms.

111
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6.1 Concept

In the current chapter, we will develop an extension of the Robust Flight Planning
framework introduced in Chapter 5. In a flight planning scenario, we design the planned
aircraft trajectory around 1 to 3 hours before departure. Depending on the duration of
the flight, the elapsed time between the moment that the flight plan is produced and the
instant where the aircraft would encounter convective weather may range between 2-3
hours to more than 10 hours. At these lead times, forecasting and nowcasting systems
are not able to produce estimates of the future position and shape of convective cells with
enough accuracy to design reliable flight plans, as explained in Section 3.3. Thus, it is
assumed that, if the aircraft encounters adverse weather, it will need to deviate from the
planned trajectory in order to avoid it. This deviation leads to higher cost trajectories in
average (as the avoidance routes are usually longer) and more unpredictable trajectories.
Uncertainty is amplified when taking into account multiple trajectories, as an aircraft
may receive additional ATC advisories due to conflicts with other aircraft that are also
trying to avoid the same convective cells.

However, even if we cannot determine with precision the future location and timing
of convective triggers and individual cells, it is possible to identify regions where the
necessary conditions for convection are forecasted to be met. We can employ this infor-
mation to generate more efficient and predictable trajectories at the planning horizon.

We will model these conditions with the aid of the function ctp(φ, λ, t), introduced in
Section 3.3.1. Given the latest EPS forecast available at planning time tp, this function
represents the fraction of the EPS members forecasting that two indicators of convective
conditions (Total Totals and Convective Precipitation) will exceed their thresholds at
point (φ, λ) and at time t. For convenience, we assume that the planning time tp is
unambiguous and denote the function c(φ, λ, t).

Assume now that an aircraft has a trajectory described by the time domain T =
[t0, tf ], the groundspeed profile vg(t), and a lateral profile described by (φ(t), λ(t)). We
define the exposition to convection EC as

EC =
∫ tf

t0

c(φ(t), λ(t), t)vg(t)dt (6.1)

Using the position variable s, defined as in Chapter 5, we can write this definition
more concisely as:

EC =
∫ sf

s0

c(φ(s), λ(s), t(s))ds (6.2)

We now assume that the expected cost of crossing convective zones, in terms of ad-
ditional fuel burn (∆mc), flight time (∆tc) and unpredictability (∆σc) due to avoidance
maneuvers, is linear on EC. In other words, if one possible route overflies a region with
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high likelihood of convection for 200 km and another possible route overflies it only for
100 km, we assume that the expected costs of the former route will be twice the costs
of the latter. These relationships will be modeled by the parameters βm, βt and βσ, i.e.

E[∆mc] = βmEC (6.3)

E[∆tc] = βtEC (6.4)

∆σc = βσEC (6.5)

Assume now that the flight planner has time-fuel preferences described by a Cost
Index (CI) and average cost - uncertainty cost preferences described by a Dispersion
Penalty (DP) parameter, i.e., the cost functional (without the effect of convection) is
given by

JRFP = −E[m(tf )] + CI · E[tf ] + DP · σ[tf ] (6.6)

where σ[tf ] is a measure of the uncertainty in the arrival time (such as the range
or a multiple of the standard deviation). The increase in total cost due to the average
effect of convection ∆Jc can now be modeled as:

∆Jc = E[∆mc] + CI · E[∆tc] + DP ·∆σc = (βm + βtCI + βσDP)︸ ︷︷ ︸
Convective penalty

EC (6.7)

If we now define the convective penalty parameter CP(CI, DP) = βm+βtCI+βσDP,
we can extend the cost functional of the robust flight planning problem to include the
effect of convection. The new cost functional is given by:

JRFPc = −E[m(tf )] + CI · E[tf ] + DP · σ[tf ] + CP(CI, DP) · EC (6.8)

with the rest of the problem formulation remaining identical to the one in Chapter 5.
Estimating the statistical relationship between the exposition to convection and the

deterioration of the objectives of interest (i.e. determining the values of the coefficients
βm, βt and βσ) is a challenging research problem that falls outside of the scope of this
thesis, as it requires either a complex statistical analysis of historical traffic patterns
and deviations (which may not generalize to an evolving concept of operations in the
future) or a simulation-based analysis that demands realistic models for the stochastic
generation of convective thunderstorms, as well as a realistic model of the processes
of replanning avoidance routes and traffic deconfliction. Instead, for the remainder of
the chapter we will assume that the convective penalty CP is an independent parameter
chosen by the flight planner, in the same way as the cost index or the dispersion penalty.
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6.2 Results

In order to understand how the planned trajectories produced by this framework
manage to improve the desired objectives, we now proceed to apply the proposed varia-
tion of the robust flight planning methodology to a flight planning problem for different
settings of the optimization parameters.

We consider a wide-body twinjet aircraft, modeled according to the BADA4 spec-
ification, flying from the vertical of New York (-73.8 deg, 40.6 deg) to the vertical of
Argel (3.2 deg, 36.7 deg) at constant barometric altitude 200hPa and Mach 0.82. Initial
mass has been set to 200 tons. We use a forecast for a pressure of 200 hPa 9 hours in
advance for the 19th of December 2016 from the ECMWF ensemble, elaborated by the
European Center for Medium-Range Weather Forecasts (ECMWF)1 with 51 members.
As in Chapter 5, we rely on a constant weather picture for ease of exposition and analy-
sis. We rely on the CasADi library[251] as NLP interface [252] and IPOPT [77] as NLP
solver.

We will perform two analyses. In first place, we study the constant airspeed (with
TAS = 240 m/s) routing problem (Section 6.2.1) by considering the 2Dt model (see
Section 3.1.4) and, afterwards, we demonstrate the method for the variable airspeed
problem (Section 6.2.2), based on the 2Dt-m-e model.

6.2.1 Constant Airspeed

Figure 6.1 displays the geographical routes for different values of DP and CP . It
can be seen that routes computed with higher DP (setting CP = 0) tend to avoid the
high uncertainty zone in the North Atlantic in order to increase predictability, at the
cost of taking a more indirect route that is longer on average. It can be also observed
that routes computed with higher CP (setting DP = 0) tend to reduce the exposure to
convective risk zones, again at the cost of taking a more indirect route. Four selected
flight plans produced with different CP -DP pairs are shown in Figure 6.2.

1http://apps.ecmwf.int/datasets/

http://apps.ecmwf.int/datasets/
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(a) Optimal paths with different DP values (CP=0).
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(b) Optimal paths with different CP values (DP=0).

Figure 6.1: Optimal trajectories for DP/CP values. Higher brightness in the trajectory
color indicates higher values of the penalty. Color contour scale indicates wind uncertainty
characterized as

√
σ2

u + σ2
v, with σu being the standard deviation of the u component of wind

across different members and σv analogous for the v-component. Dashed regions indicate
regions of convective exposure.
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Figure 6.2: Optimal paths for different DP-CP pairs.

The evolution of time spreads and convective exposure over the flown distance is
presented in Figure 6.3. Comparing the maximum average efficiency trajectory (cor-
responding to DP = 0 and CP = 0) with a more predictable trajectory, e.g, that of
DP = 6 and CP = 0, it can be seen how the spread in the ensemble times increases
slightly when the aircraft crosses the area of high uncertainty in the middle of the North
Atlantic. Similarly, comparing the maximum average efficiency trajectory with another
with less exposure to convection, e.g., that of DP = 0 and CP = 0.01, it can be readily
seen in Figure 6.3 that the exposure (the integral, or area below the curve) is reduced.
For the minimum average fuel case (DP = 0), the time dispersion at the final fix is
around 200 seconds, whereas for the DP = 6 case, the time dispersion at the final fix
is around 100 sec. In other words, around one and a half minutes reduction in time
uncertainty could be achieved by flying a more predictable trajectory (DP = 6). This
improvement comes at the cost of extra flight time and associated fuel burnt on average.

Figure 6.4 presents different Pareto frontiers (for different pre-set average flight times)
and shows different possible solutions with trade-offs between time spread, accumulated
convection, and arrival time (directly related to consumption). In other words, and in
order to display the trade-off effects of dispersion and convection, we have solved the
problem with an additional constraint that enforces the average arrival time to be a
pre-set one. For the sake of illustration, we present result for average final times set
equal to 395 minutes, 400 minutes, and 405 min.
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Figure 6.3: Evolution of time spreads and convective exposure.
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(b) Time spreads and accumulated convection. Each segment represents the arrival time window

Figure 6.4: Trade-offs between variables (spread and convection exposure) for three different
arrival times; ekm denotes "equivalent kilometer"
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Quantitate values of flight dispersion and exposure to convection can be readily
extracted out of Figure 6.4. Consider the flight constraint to reach the final fix at an
average flight time of 400 minutes (orange line in Figure 6.4.a): for a dispersion of roughly
1.5 minutes the exposure to convective areas would be of roughly 1000 e-km (equivalent
kilometers, i.e., kilometers flown at probability of convection equal to one). If ones want
to reduce this exposure to convection to roughly 500 e-km, it comes at a cost of an extra
1.5 minutes (3 in total) of flight dispersion. The same information, however differently
represented, has been included in Figure 6.4.b. Nevertheless, notice that these numbers
correspond to this particular case (route, day, and weather forecasts) and may or may
not be representative of characteristic costs and benefits. Further studies should assess
these quantities in a more systematic fashion.

6.2.2 Variable Airspeed

We now proceed to relax the assumption of constant airspeed and allow the algorithm
to optimize the airspeed schedule too. In this case, fuel consumption is no longer tightly
related to flight time, and we employ the Cost Index (CI) parameter along the DP and
CP parameter in order to represent the preferences of the airline.

Figures 6.5 and 6.7.a) represent the geographical paths of the variable airspeed profile
case by changing each of the preference parameters. The behaviour of the algorithm
for varying DP and CP is very similar to the one in the constant airspeed case (cf.
Figure 6.1), while the geographical path does not change significantly when modifying
the cost index.

The airspeed profiles are shown in Figure 6.6 and Figure 6.7.b). It can be observed
that the main influence in the airspeed profile is the variation in the CI, which increases,
as expected, the airspeed values along the whole trajectory. The CP parameter does not
have a big influence on the shape of the airspeed profile, which changes as the lateral
path shifts to a different location. Finally, the flight plans with high DP exhibit the same
phenomena as the results in Chapter 5, where the airspeed changes locally depending on
the uncertainty of the winds at each point in the trajectory, with higher airspeeds when
the aircraft crosses higher uncertainty zones. This influence is moderated by higher CI
settings (compare the dashed lines with the solid lines in Figure 6.6.a).
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(a) Optimal paths with different DP values (CP = 0).
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(b) Optimal paths with different CP values (DP = 0).

Figure 6.5: Optimal trajectories for different CP/DP/CI values. Color contour scale indi-
cates wind uncertainty characterized as

√
σ2

u + σ2
v, with σu being the standard deviation of the

u component of wind across different members and σv analogous for the v-component. Dashed
regions indicate regions of convective exposure.
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(a) Optimal airspeed schedules with different DP values (CP=0).
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Figure 6.6: Airspeed profiles for varying cost functional parameters.
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(a) Optimal paths with different CI values (DP=CP=0).
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Figure 6.7: Geographical path and airspeed profile for varying cost index.
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In order to compare the joint effect of changes in multiple parameters, we now
highlight 8 trajectories obtained with different sets of parameters, resulting from the
combination of two values for each of the parameters. Figure 6.8 illustrates the optimal
paths of these highlighted trajectories. The clearest interaction takes place when CI
increases, since it “pulls back” the trajectories with higher CP and DP values towards
the optimal trajectory on average; this can be explained by the fact that the dispersion
and convection terms lose relative weight as CI increases. The other interaction that can
be observed is that, when DP is increased at high CP, the optimal trajectory shifts even
more towards the North instead of being pulled South towards the “high DP” solution,
which illustrates the nonlinear effects caused by the nonconvexity of the uncertainty and
convection fields.
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Figure 6.8: Optimal path for the featured trajectories.

Figure 6.9 shows the respective airspeed profiles. Clearly, at high CI values the
airspeed profiles also become high and very similar. The airspeed profiles for the low CI
trajectories show more variability between them, which should be expected as they fly
different lateral paths and thus face different winds. Finally, the “speed-up on higher
wind uncertainty” effect is also clearly present for the trajectories with high DP but low
CI. Again, a higher CI setting has a regularizing effect, leading to smoother airspeed
profiles as the relative influence of the wind and its uncertainty is reduced.
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Figure 6.9: Airspeed profiles for the featured trajectories.

We show the evolution of the time dispersion along the trajectory in Figure 6.10.
In this chart, we plot the flyby times at each point in the trajectory for each of the 50
ensemble members. It can be observed that higher DP settings lead to tighter uncer-
tainty profiles, just as expected; however, this trend is moderated by the increase in the
other parameters (particularly the cost index), since the relative importance of reducing
dispersion due to wind uncertainty decreases.

Figure 6.11 illustrates the probability of convection c(φ, λ, t) along the route (com-
pare with Figure 6.8 to see how the segments of high probability of convective conditions
correspond to the crossing of the highlighted regions). Again, it is clear that a higher CP
parameter emphasizes avoidance of areas of likely convective conditions; the trajectories
generated with CP=0.1 only encounter (unavoidable) risk of convection at the end of
the trajectory, near the destination airport.
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Figure 6.10: Evolution of time spreads for the different ensemble members.
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Figure 6.11: Evolution of the convective exposure.
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Finally, we illustrate the trade-offs that are available to the flight planner in Fig-
ure 6.12. In the top figure, we illustrate the trajectory options, in terms of the average
performance, that can be obtained for selected levels of uncertainty (both from wind and
convection). In first place, it can be observed that the cost of reducing uncertainty due
to wind has a nonlinear shape, with the level curves being relatively closer between 200 s
and 180 s of arrival time range than between 180 s and 140 s. This is consistent with the
results of Section 5.2: using airspeed variations allows the algorithm to cheaply improve
predictability up to a point where it saturates or becomes inefficient; afterwards, the
more expensive lateral path modifications need to be employed and the cost of reducing
the arrival time window by 10 seconds is 100 to 200 kg in average or 3 to 6 minutes.
Reducing exposure to convection appears to have a more homogeneous penalty in terms
of cost, with the cost of encountering 50 km less of potential convective conditions being
on the order of several minutes or several hundred kilograms.

In the bottom panel, we can observe the uncertainty that a trajectory will face for a
given average performance. We can again observe the mentioned nonlinearity: at higher
widths of the arrival time window, it is relatively cheap to decrease it (now in terms of
exposition to convection at fixed E[tf ] and E[mf ]), with the level curves being flatter at
the right of the kink point. However, they become steeper at the left of this point. The
mentioned trade-offs between exposition to convection and average performance can also
be observed more clearly in this graph: at around 180 seconds of arrival window size,
250 kg of average fuel burn can reduce exposition to convection by 15 to 20 equivalent
km in faster flights and by 30 to 40 equivalent km in later arrivals. In other words, at
high Cost Index settings (faster flights) where flight time is more relatively important,
predictability improvements are more expensive in terms of average fuel burn than they
are at slower flights, as the algorithm has more “room” to tune the flight plan.
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Figure 6.12: Trade-offs (Pareto fronts) between variables



CHAPTER

SEVEN

Modeling Uncertainty in Convective Nowcasts

In Chapter 6, we introduced a framework for the consideration of convection at a
planning horizon based on numerical weather forecasts. As discussed in 1.4.2, radar and
satellite nowcasts are more accurate than NWP forecasts at a tactical horizon. However,
these nowcasts often rely on linear extrapolation and rarely consider uncertainty in
thunderstorm evolution. In this chapter, we present a model of the uncertainty in the
deterministic RDT nowcasts, which we can use to generate probabilistic forecasts in
short time horizons; the resulting framework will be employed in Chapter 8 for the
purpose of automated trajectory planning in convective environments.

129
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7.1 Deterministic Input

We will now proceed to build a probabilistic forecast based on the deterministic RDT
forecasts. The end goal is to obtain a function of the form ptr (r, t) that represents the
probability that the point r = (φ, λ) ∈ R2 (where φ and λ denote geodetic latitude and
longitude, in degrees) lies inside a convective storm at time t, as estimated using the
forecasts available up to time tr.

Let ta be the time at which we build the probabilistic forecast (not the deterministic
RDT forecast). We define the reference time tref ≤ ta as the time at which the latest
RDT analysis was released at time ta 1. See Figure 7.1 for reference.

As input data, we will make use of the latest Nsteps forecasts that are available before
ta. We will denote the corresponding forecasts times as follows (see Figure 7.1):

tf−i = tref − i · 15 min, i ∈ I := {0, 1, . . . , Nsteps − 1} (7.1)

Future
(projections)

Past 
(available forecasts)

Time at which the probabilistic forecast is produced

Time for which the probability field is calculated

15 min} {
Extrapolation

Figure 7.1: Construction of the time-lagged ensemble

For example, if Nsteps = 3 (as in our implementation), we will employ the forecasts
made at tref , tref − 15 min and tref − 30 min.

1While each analysis contains forecasts for multiple discrete time horizons (15, 30, 45, and 60 min-
utes), we can extrapolate them to any instant between them by making use of the speed and direction
information.
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For each of these forecasts, the projected position of each storm can be extrapolated
to any posterior time t in a linear and deterministic manner by employing the velocity
information provided by the forecast and the temporal distance; in other words, we add
the quantity vs · |t − tf−i| to each point in the polygon that defines the contour of the
storm, where vs is the estimated velocity of the storm in latitude-longitude coordinates
and can be expressed as:

vs = 180
π
R−1
E vf

[
cosχf

(cosφ)−1 sinχf

]
(7.2)

where RE is the mean radius of the Earth, vf is the velocity of the storm as estimated
by the RDT forecast and χf is the estimated direction of movement of the storm (again
provided by the RDT extrapolation).

Let J = {Triggering, Triggering from split, Growing, Mature, Decaying} be the
set of possible phases of the storm. For a given reference time, we now compute the
indicator functions I−i,j(r, t) with i ∈ I , j ∈ J . These functions take the value 1 if,
according to the forecast made at tf−i and extrapolated to time t in the aforementioned
fashion, the point r lies inside a storm with phase j; they take the value 0 otherwise.

Time

P
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n

Total movement

Average (deterministic) movement

Stochastic displacement

Figure 7.2: Example realization of Equation 7.3
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7.2 Stochastic Motion

We will now proceed to incorporate stochasticity into the movement of the convec-
tive cell in order to represent the forecast uncertainty2. We model this evolution as
a Brownian motion with drift. This process is described by the following SDE (see
Section 2.5.3):

dct = vsdt+ ΣwdW (7.3)

In this equation, ct denotes the position of a reference point in the storm, such as
the center; vs denotes the average speed of the storm. Σw is a matrix describing the
magnitude and shape of the random perturbations; we model them as isotropic, i.e.,
Σw = σwI2×2 with σw denoting the amplitude of the perturbations. Finally, W denotes
a standard two-dimensional Wiener process.

We define the stochastic displacement D as the difference between the stochastic
position ct and the deterministic forecast ctf−i + vs(t− tf−i) (see Figure 7.2). For a fixed
t, this displacement is a Gaussian random variable with mean 0 and standard deviation
σw

√
t− tf−i; its probability density function is, therefore:

ptD(y) = 1
√

2πσw|t− tf−i|
exp

(
− ||y||2

2σ2
w|t− t

f
−i|

)
(7.4)

Because the position of the storm is now a stochastic process, the indicator func-
tions I−i,j(r, t) become stochastic processes too. We can, however, compute their ex-
pected value Ī−i,j(r, t) with a straightforward convolution operation, as shown by equa-
tion (7.5). See Figure 7.3 for a schematic illustration of the convolution process.

Ī−i,j(r, t) = E[I−i,j(r, t)] =
∫
R2
ptD(y)I−i,j(r− y, t))dy = ptD ∗ I−i,j(·, t) (7.5)

Performing this approximation for multiple storms in the same manner requires the
assumption that the stochastic displacement is common to all storms with the same
phase j; in other words, the movement of the storms is assumed to be perfectly correlated
and linearity allows us to take the convolution after aggregation. While it would be
desirable to model the correlation of the movements of the storms, we consider this
approximation good enough for our purposes, as it approximates a “correct” Ī−i,j by an
upper bound.3

2In this work, we will not consider changes in size or shape
3Assume that there are two storms, and the events that the point r is in each one of them at time t

are denoted by A and B. Then
P (A ∪B) = P (A) + P (B)− P (A ∩B) = Ī−i,j(r, t)− P (A ∩B).
Therefore, if P (A ∩B) (which represents the probability of the point being inside both extrapolated

storms) is small enough, the approximation is close. For more storms, the argument is similar, as the
difference is again only intersection terms.
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Figure 7.3: Deterministic and stochastic (averaged) indicator functions in one dimension at
different, successive times.

7.3 Statistical Model

At this stage, we have |I |×|J | smoothed, extrapolated indicator functions. In order
to integrate the information from all of them in a data-driven fashion, we will use them
as predictors in a statistical model. We select a logistic regression model, as it is a
simple specification that models the output variable as the probability that the event of
interest takes place (in this case, the existence of convective conditions in a future step).
Therefore, by comparing the predicted indicators with the actual outcomes (according
to the analysis in the next time steps), a logistical regression procedure can be employed
to predict convective conditions in a probabilistic manner.

In a Generalized Linear Model (GLM) such as linear regression, an outcome variable
y (that, in a binary setting like ours, takes values in {0, 1}) is modeled as a random
variable whose expected value depends on the values of a vector z of predictors or
“features”:

`(E[y]) = wT z (7.6)

where ` represents a link function while w is a vector of coefficients whose values are
determined, in GLM routines, by maximizing their log-likelihood on a training set. The
quantity wT z is called the linear predictor.4 In the case of logistic regression, the link

4Note that, just like in the linear regression case, nonlinear predictors can be included as long as
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function is the logit function:

logit(p) = log
(

p

1− p

)
(7.7)

In our case, the predictor variables will be the extrapolated indicator functions as
well as a constant offset w0, so the linear predictor is given by:

LP(r, t) = w0 +
∑
i∈I
j∈J

wi,j Ī−i,j(r, t) (7.8)

and the desired probability function can be written as:

ptref (r, t) = logit−1 (LP(r, t)) = 1
1 + exp(−LP(r, t)) (7.9)

7.4 Model Fitting

The complete model is defined by the parameters Nsteps and the coefficients σw, w0

and wi,j . We choose Nsteps = 3 after our exploratory analysis concluded that the
coefficients after i = 2 were too close to 0 to be relevant and the statistical skill of the
model was not appreciably deteriorated by the exclusion of the i > 2 forecasts; in other
words, the information contained in the forecasts before the third to last seems to be
redundant for prediction purposes. In order to determine the remaining parameters, we
will make use of three procedures:

• An “inner loop” that computes the values of w0 and wi,j for a given value of σw,
as well as a measure of the statistical skill of the model.

• An “outer loop” that calls the inner loop for different values of σw and then selects
the value σ∗w that leads to the best statistical skill.

• A “bootstrap-like” method that runs the inner loop with σw = σ∗w and different,
randomly selected slices of the dataset in order to obtain more robust estimates
of the w0 and wi,j coefficients as well as to estimate their volatility.

We start by describing the inner loop procedure. For a given value of σw, we can
compute the values of the coefficients w0 and wi,j with the following method:

1. Select a number of dates and times ta in random fashion from a training dataset
and load the corresponding RDT analyses, as well as theNsteps preceding forecasts.

they are included in additive fashion.
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2. For each analysis, compute the “areas of interest” (AoI), defined as rectangular
regions containing any detected or forecasted storms while adding proportional
margins (see Figure 7.5). This step reduces the subsequent computational re-
quirements of the process.

3. At each point r in a rectangular grid inside an AoI, compute the values of Ī−i,j(r, ta)
and the actual value Ia(r, ta) (i.e., 1 if the point lies inside a storm according to
the analysis and 0 otherwise). Note that the extrapolated and smoothed indicator
Ī−i,j(r, ta) depends on the value of σw.

4. Launch a logistic regression routine employing the computed values of Ī−i,j as
predictors and the values of the points as data samples, returning the values of
the w0 and wi,j coefficients.

Compute predictors
with 

Run regression on
initial training data

Generate training and 
test data from dataset

Generate the
sequence

end for

Randomly subsample 
test and training data

Run regression on
new training data

on new test data

end for

Retrieve the estimated
values of the coefficients

Compute 2.5th and 
97.5th percentiles

Figure 7.4: Schematic representation of the model fitting procedures. NBS denotes the
number of bootstrap analyses.



136 Modeling Uncertainty in Convective Nowcasts

Predicted or
identified storm

Area of Interest (AoI)

a) b)

Predicted storms Area of Interest (AoI)

Identified stormsc) d)

Figure 7.5: Area of Interest determination. For a given storm (as in Figure 7.5.a), the
corresponding AoI is the rectangle containing it, with proportional margins (Figure 7.5.b).
For each analysis, comprised of multiple identified storms plus forecasted storms from earlier
analysis (Figure 7.5.c), the AoIs from each storm are merged.

The performance of the regression model can be evaluated with several metrics.
Suppose that we consider the test set (composed by data that have not been employed
in training) and predict that every data point where the forecasted probability is above
a threshold to have convective conditions and every other data point to have clear
air conditions. If we plot the true positive rate against the false positive rate as the
threshold changes from 0 to 1, we obtain the Receiver Operating Characteristic (ROC)
curve. The integral of the area below the ROC curve is called the Area Under Curve
(AUC) metric; AUC values of around 0.5 indicate that the model is no more skilled that
random classification on average, while values closer to 1 indicate high skill.5

5Values closer to 0 indicate “reverse skill”, i.e., the model is worse than chance at classifying outcomes
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Figure 7.6: Values of the AUC (Area Under Curve) metric. The dashed line represents the
polynomial approximation employed to determine the value of σw that optimizes the AUC.

We can now employ this inner loop process in order to choose the value of σw in the
outer loop and the values of w0 and wi,j in the bootstrap-like procedure. Both methods
are illustrated in Figure 7.4.

For the outer loop, we can employ the AUC criterion to choose the “best” value of
σw. We compute the logistic regression on a training set for different values of the σw
parameter (using the same randomly chosen data). Then, we compute the AUC score on
a test set. Finally, we select the value of σw that lies on the maximum of the σw - AUC
curve. This process is performed twice: first, with a logarithmic sweep of σw in order
to identify the scale of interest (upper plot in Figure 7.6); then, with a linear sweep
and polynomial approximation in order to identify the optimum with more precision
(though we will note that somewhat lower or higher values lead to very similar AUC
scores). With our dataset, comprising RDT analysis and forecasts from the 20th to the
29th of March, 2017, the chosen value is σw = 0.73 km · s−0.5.

Finally, with σ∗w fixed, we can now estimate the mean values and confidence intervals
of the coefficients {wi,j} with the bootstrap-like procedure. We randomly select 250
dates and times from the available data set and subsample 25% of the resulting areas
of interest at random; these settings allow us to hold the resulting sample in-memory.
Then, we obtain the coefficient values by regression and evaluate the performance by

so the reverse prediction has skill.
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computing the AUC score on a test dataset composed by a random 25% of a random
150 dates and times from the remaining files. We repeat this process 1000 times and
take the average, as well as the 2.5th and the 97.5th percentiles which allow us to define
the 95% confidence intervals.

The computed values of the coefficients {wi,j} are presented in Table 7.1 and Fig-
ure 7.7. It can be observed that the step of the forecast is more relevant in the prediction
than the analyzed storm phase, with the latest forecast being 2 to 4 times more influ-
ential than the previous one, while the earliest forecast is statistically significant only
partially. Additionally, we can see that the estimated values of the coefficients for storms
that are triggering are more volatile; we attribute this outcome to the fact that they
are less numerous within the data set, so the corresponding coefficient estimates have
higher variance.

The computed AUC values range from 0.949 to 0.958. This seems like an excellent
value, but we will note that our dataset features a large amount of points where no
storm is extrapolated and no storm occurs; this inflates the AUC score by providing a
lot of “easy predictions”. In practice, our model will often miss newly created storms
that are hard to detect using extrapolation procedures, unless they are close enough to
other storms that the probability dispersion effect assigns some non-zero probability.

Figure 7.8 compares the deterministic extrapolation of an RDT nowcast to the prob-
ability field generated by the fitted model. It can be observed how the probability field
diffuses as the forecast horizon increases.

0 min -15 min -30 min

Triggering 5.71 (4.95, 6.79) 2.56 (1.47, 3.54) 0.05 (-0.87, 1.23)
Tr. (split) 6.45 (6.11, 6.81) 1.76 (1.20, 2.34) -0.05 (-0.68, 0.57)
Growing 5.65 (5.40, 5.89) 1.24 (0.87, 1.61) -0.08 (-0.43, 0.28)
Mature 5.76 (5.52, 6.03) 1.75 (1.38, 2.10) 0.70 (0.35, 1.03)
Decaying 5.70 (5.49, 5.92) 1.55 (1.23, 1.87) 0.58 (0.25, 0.91)
w0 -4.15 (-4.19, -4.12)

Table 7.1: Coefficient values {wi,j} and 95% confidence intervals computed as described in
the text.
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among different bootstrap-like fits, with the box representing the 25th, 50th and 75th percentiles
and the whiskers representing the 10th and 90th percentiles.
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We will now turn our attention to the issue of how to employ these generated prob-
abilistic forecasts for the purpose of flight planning under uncertainty in Chapter 8.



CHAPTER

EIGHT

Optimal Stochastic Storm Avoidance

In the preceeding chapters, we have studied the problem of robust flight planning
at a “planning horizon” of 2 to 3 hours before departure, optimizing an entire cruise
operation. In the current chapter, we turn our attention to a narrower “tactical horizon”
of 5 to 30 minutes before a potential encounter with meteorological hazards, optimizing
only a leg or segment of the flight. At this stage, convection represents the most salient
weather phenomenon in terms of risks to the aircraft, and thus pilots are led to avoid
convective areas with maneuvers and trajectory modifications that are hard to predict
in advance, introducing uncertainty into ATM operations.

The chapter describes a trajectory planning framework under convective activity,
based on the probabilistic thunderstorm evolution model introduced in Section 3.3.2.
We describe the modeling strategy and the problem formulation in Section 8.1. The re-
sulting optimal control problem is initialized with a randomized heuristic, described in
Section 8.2, with the goal of exploring the multiple local optima of the problem. Finally,
Section 8.3 contains a case study that showcases the proposed approach in a convective
scenario, as well as a discussion of the results.
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8.1 Problem Modeling

8.1.1 Dynamical Model

We assume that the uncertainty in the movement of the storm is substantially greater
than the uncertainty in aircraft dynamics. Therefore, we model the motion of the aircraft
as a deterministic system, in contrast to Chapter 5. We assume that the aircraft moves
in a constant flight level and that turning dynamics are important; thus, we choose
to employ the 2Dt-mµ-e model from Section 3.1.4. The corresponding differential-
algebraic equations are:

2Dt-mµ-e model

State variables: φ, λ, v, χ, m

Control variables: CL, CT , µ

Differential equations:

φ̇

λ̇

v̇

χ̇

ṁ



=



v cosχ+ wy

(RM (φ) + h)

v sinχ+ wx

(RN (φ) + h) cosφ

T(CT )−D(CL)
m

g

v
tanµ

−fc(CT )


Algebraic constraints:

L(CL) cosµ = mg

In addition, we add the following constraint:

v ≤ vmax (8.1)

where vmax represents the potential speed limit when flying through turbulent air
near convective zones.
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8.1.2 Optimal Control Model

We turn again to optimal control to solve the flight planning problem at hand. The
objective function is defined as follows:

J =
[
−m(tf ) + CI · tf + rp

∫ tf

t0

p(r(t), t)dt
]
, (8.2)

where CI is the “Cost Index” parameter, representing the preference for reduced
flight time instead of fuel burn, and rp is the “risk penalty”, which we define as the
preference for reduced exposition to regions of high storm probability instead of the
other objectives. A higher rp setting generates a trajectory that is less likely to be
exposed to convective activity.

The optimal control problem is formulated as:

min J (8.3)

subject to:

d

dt


φ

λ

v

χ

m

 =


(RN + h)−1(v cos(χ) + wx(φ, λ, t))

(RM + h)−1 cos−1(φ)(v sin(χ) + wy(φ, λ, t))
(T(CT )−D(CL, v))/m

(g/v) tanµ
−η(v)T(CT , v)

 (8.4)

L(CL, v) cosµ = mg (8.5)

|µ| ≤ 45◦, (8.6)

CL ≤ CLmax (8.7)

M ≤MMO (8.8)

CTmin ≤ CT ≤ CTmax (8.9)

and the boundary conditions:

(φ, λ, v, χ,m)(t0) = (φ0, λ0, v0, χ0,m0) (8.10)

and

(φ, λ, v)(tf ) = (φf , λf , vf ) (8.11)
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If a required time of arrival (RTA) to the end waypoint is specified, we set tf = tRTA

instead of leaving it free. Naturally, if an RTA is set in this fashion, the CI setting
becomes irrelevant.

As in previous chapters, we work with direct transcription methods that transform
the optimal control problem into a nonlinear optimization problem. Therefore, a user-
provided initial guess for the decision variables (the values of the trajectory state and
control variables at every node) is required. We describe the generation of this initial
guess in Section 8.2.

Note that the presented optimal control scheme requires a probability field of function
of the form p(r(t), t) ∈ [0, 1] (in either analytical or gridded representation), such as the
one we generate in Chapter 7. Therefore, a different weather forecast or product could
be employed as input, as long as it is provided in the required shape and represents the
same concept (the probability of an aircraft at r being within a convective cell at time
t ) or a similar one.

8.2 Initialization

The selection of the initial guess is important for two reasons. First, the quality of the
initial guess is, in general, an important factor in the performance of NLP solvers. The
number of iterations, the computational time (particularly relevant for our purposes)
and the likelihood that the algorithm converges to an optimal solution are all dependant
on the initial guess.

Second, we expect the optimization problem that we formulate to have multiple local
minima; therefore, the initial guess will determine which of these multiple solutions will
be found by the algorithm. We expect different local minima because of the non-convex
nature of the problem, which is derived to a high extent from the existence of multiple
potential avoidance routes that are separated (in trajectory space) by “worse” routes
that cross the obstacles. This implies the existence of multiple basins of attraction
around the locally optimal routes.

For these reasons, we have designed a randomized heuristic initialization procedure
that produces different initial guess trajectories with the goal of exploring the solution
space and find the different local minima. Generating multiple solutions also has op-
erational benefits, as pilots and controllers can then choose one of them according to
a different criterion (for example, facilitating deconfliction or sequencing); additionally,
it is possible for them to employ their trained intuition and experience to judge the
feasibility and complexity of the trajectories, or any factor not included in the model,
to take the best decision in practice.

The generated trajectories will be generated assuming no wind and constant airspeed
vIG. Under these assumptions, any trajectory from r0 to rf can be represented by the
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arrival time tf and the heading history χ(t). However, it is not true in general that any
randomly chosen arrival time and heading history will lead to a satisfactory solution,
as there is no guarantee that the arrival point will be rf . Therefore, we will generate a
“normalized” heading history χ̂ : [0, 1]→ R such that

χ(t) = χ0 + χ̂

(
t

tf − t0

)
, (8.12)

where χ0 and tf are adjustable constants that allow us to generate a valid heading
history from any continuous normalized heading history χ̂ through a straightforward
rotation (adjustment of χ0) and stretch (adjustment of tf ).

In order to generate χ̂, we consider the following basis expansion:

χ̂(τ) =
nL∑
k=1

akZkPk(τ) (8.13)

where nL represents the degree of the expansion (we use 4), {Zk} is a sequence
of independent standard normal variables, {ak} represents a weighting sequence (in our
implementation, ak = (3/4)1−k) and {Pk} denotes the shifted Legendre polynomials (the
Legendre polynomials on [0, 1]). Note that the zeroth term is omitted, as it corresponds
to a constant offset and χ0 already fulfills that role. Table 8.1 lists the shifted Legendre
polynomials up to degree 5.

k Pk(τ)
0 1
1 2τ − 1
2 6τ2 − 6τ + 1
3 20τ3 − 30τ2 + 12τ − 1
4 70τ4 − 140τ3 + 90τ2 − 20τ + 1
5 252τ5 − 630τ4 + 560τ3 − 210τ2 + 30τ − 1

Table 8.1: Legendre polynomials on [0, 1].

By sampling {Zk} in random fashion, we can generate different functions χ̂(t), which
determine different heading histories χ(t). We generate the rest of the state and control
trajectory by integrating Equation (8.4), thus completing the initial guess. Finally, by
solving the problem with different starting points obtained in this fashion and collecting
the corresponding solutions, we have a higher chance of obtaining a global optimum
instead of a single local optimum.

We note that the relationship between a given starting point and the optimal solution
found by the solver is not fixed, but may depend on the choice of NLP solver and its
settings.
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8.3 Results

Our test scenario is based on a storm group that is detected by the RDT algorithm
on November 16th, 2017. The storm group is evolving towards North-East. The scenario
starts at 6:00Z and ends at 07:30Z. A twinjet narrow-body airliner modeled according
to the BADA 4 specification flies at FL330 from (φ0, λ0) = (34◦,−24◦) to (φf , λf ) =
(28◦,−19◦), therefore crossing the group of storms. The remaining initial conditions are
given by:

χ0 = 115◦ (8.14)

m0 = 71495 kg (8.15)

v0 = 220 m/s (8.16)

We select rp = 10 kg/s, a required time of arrival at the end waypoint of 07:12Z,
a vmax of 230 m/s, and a final airspeed of 200 m/s. We solve the problem with the
initialization procedure described in Section 8.2, starting from 3400 randomly chosen
starting points. We will discuss the best solution found in Section 8.3.2 and the other
local minima afterwards, in Section 8.3.3.

8.3.1 Computational Setup

We employ the Python-based CasADi [251] library for NLP modeling. The probabil-
ity field is computed in a 0.1◦×0.1◦ grid, sampled every 5 minutes, and then interpolated
through 3-dimensional B-splines. We employ the interior-point NLP solver IPOPT [77]
running with the MA27 sparse symmetric linear solver from the HSL Mathematical
Software Library [253] and initial barrier parameter µ = 10−3.8. The computations are
performed in a workstation equipped with an Intel Xeon E3-1240 v5 CPU running at
3.5 GHz.

We employ a trapezoidal transcription scheme [75, Chapter 4] with piecewise-constant
controls as direct collocation method, with defect constraints of the form

xn+1 − xn = ∆t
2 (f(xn+1,un, tn) + f(xn,un, tn+1)) , ∀n ∈ {0, . . . , Nnodes − 1},

with the subscript n denoting the value of the directized variables at the n-th node or
interval and ∆t = tf − t0

Nnodes − 1 ≡ tn+1 − tn denoting the node spacing. By employing an
homogeneous node spanning h, this transcription scheme samples the probability field in
a homogeneous fashion, unlike higher-order pseudospectral methods [81]; furthermore,
the potential existence of constrained arcs (such as legs at maximum speed) does not
allow us to assume that pseudospectral methods will provide spectral accuracy unless
coupled with complex adaptive methods. In any case, the choice of discretization method
is not critical for our work.
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8.3.2 Global Optimum
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Figure 8.1: Computed trajectory and storm probability p(r, t) at different points in the
trajectory. The solid line with dots represents the flown part of the trajectory while the dashed
one represents the remaining part. The three contour levels represent the 2.5%, 5% and 10%
probability levels.

Figure 8.1 illustrates the evolving probability field p(r, t) at different instants in time,
as well as the planned trajectory of the aircraft, passing through a corridor between
the storms. It can be observed that the planned trajectory takes the future potential
evolution of the storms into account, and not just the present location of the storms.
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Figure 8.2: State space and control trajectories for the global solution.

State and control trajectories are illustrated in Figure 8.2. Since the resulting air-
speed profile is relatively smooth, the longitudinal controls (CT and CL) are stable, while
the lateral-directional control (the bank angle, µ, with CL playing a compensation role)
changes in order to steer the aircraft. Beyond the initial and final transitions towards
the initial and final conditions, the speed slowly decreases as the mass decreases. This
could be attributed to multiple factors: it might be optimal to go faster at the beginning
in order to avoid the storms incoming from starboard and to go slower at the final leg in
order to wait for the storms at the port side to go away. Alternatively, the TAS profile
might be similar to the one in a simple, one-dimensional cruise problem [94]; in this kind
of setting, the optimal solution requires that the airspeed slowly goes down as the mass
of the aircraft decreases.

8.3.3 Local Optima

We illustrate all the locally optimal paths found by the method in Figure 8.3. We
highlight the five solutions that are present in more than 1% of the runs and have
objective values closer than 100 kg to the global optimum.
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Figure 8.3: Trajectories from different randomized starting points. For the most likely
trajectories with close-to-optimal objective function values, we annotate the difference in cost
with respect to the global optimum and the percentage of the time that the randomized initial
guess produces the trajectory. The storm probability field is represented at 06:30Z
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It can be observed that about two thirds of the starting points lead to the most
common trajectory, which is very close in cost (12 kg) to the global optimum. Another
4.4% of the starting points lead to the global optimum, as discussed in Section 8.3.2.
Together, the five highlighted trajectories account for nearly 85% of the initialization
points; the remaining 15% of the starting points lead to trajectories that have higher
costs or are found infrequently. Some of these solutions try to route around the whole
storm group, but the RTA requirement prevents them from fully avoiding the bigger
storm clusters.

These results confirm our hypothesis about the multiplicity of local optima formu-
lated in Section 8.2. Therefore, the usage of a randomized initial guess procedure is
justified.

Figure 8.4 displays the airspeed profiles of these trajectories. The most common
solution features the slowest airspeed profile and, thus, the lowest expected fuel burn
(as long as the trajectory does not have to reroute). It does so, however, at the expense
of increasing the potential exposition to convective hazards when compared to the global
optimum (see Figure 8.5 and Figure 8.6).
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Figure 8.4: TAS profiles of the randomly initialized trajectories
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Another feature present in the airspeed profiles shown in Figure 8.4 is the appearance
of peaks of increased airspeed, which correspond to the crossing of zones of higher
storm probability (compare with Figure 8.3 and Figure 8.5). This phenomenon can be
explained by the shape of our cost functional, where the cost of flying through risky
zones depends not only on the probability level but on the time spent in risky zones,
and thus flying faster is recommended. This might seem to contradict recommendations
to not fly at high speed through turbulent air, but we address this issue with the vmax
setting in Equation (8.1). The best solution, which does not cross zones where the
probability field is above 2.5%, is the only one that does not feature these temporary
airspeed increases.
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Figure 8.5: Probability field along the trajectory. The horizontal dashed lines represent the
2.5%, 5% and 10% probability levels.

Figure 8.6 shows the two components of the objective value that is achieved by each
trajectory. As discussed earlier, approximately 85% of the starting points lead to one of
the five highlighted trajectories, which have close-to-optimal cost. A few of the remaining
trajectories also have relatively small cost increases with respect to the optimum (50 -
200 kg), manifesting mainly in the form of increased fuel burn. The second cluster has
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similar fuel consumption patterns, but the potential exposition to convective weather
rises by about 50% (from 1.4 equivalent minutes to 2.1 equivalent minutes).
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Figure 8.6: Solution cost. The dashed lines represent level curves of equal total cost.

The information provided in these figures could be presented to the decision-maker in
order to assess the safety of the proposed trajectory, as Figure 8.5 represents the risk of
encountering thunderstorms at each instant in the trajectory while Figure 8.6 illustrates
the accumulated risk. Note that, in our approach, the event to avoid (because it would
likely lead to an unplanned route deviation) is an encounter with a convective cell, not
an instance of loss of separation with the convective cell, as we deal with uncertainty in
an explicit form instead of employing pre-determined safety margins. Nevertheless, it
is certainly possible to add additional safety margins to our approach by enlarging the
deterministically nowcasted storms by the desired amount before the application of the
model.

The distribution of the computational cost associated with the solution of the op-
timization problem (not including preprocessing) is shown in Figure 8.7. It can be
observed that the NLP solver takes less than 30 seconds of CPU time to find the cor-
responding solution around 90% of the time. The computational cost of the algorithm
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can be thus considered as moderate. While the 10-40 seconds of optimization time is
useful for analysis and close to real-time performance, the multiple runs needed to obtain
the alternative trajectories with the initialization scheme represent a limit in terms of
practical implementation. Nevertheless, because these runs are independent processes,
it is possible to run them in parallel.
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Figure 8.7: Distribution of the computational cost.
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NINE

Conclusions and future work

In this dissertation, we have introduced methods based on optimal control to design
efficient aircraft trajectories in the presence of meteorological uncertainty. In first place,
an appropriate modeling framework for aircraft motion in ATM contexts was proposed.
Meteorological uncertainty was modeled at multiple timescales, using ensemble forecasts
to model wind and convection at the planning horizon and satellite nowcasts to model
convective activity at the tactical horizon.

In order to select a computational framework, an examination of the literature on
dynamic optimization and flight planning was performed. Because of its ability to model
complex aircraft dynamics and handle dynamical systems of moderate size, numerical
optimal control techniques based on direct methods are adequate for the solution of
free-routing aircraft trajectory planning problems.

The first contribution of the thesis represents a framework for the solution of nonlin-
ear optimal control problems under parametric uncertainty. It extends previous concepts
from the literature, based on restrictive “open-loop” operational paradigms, in order to
solve a much wider class of practical optimization problems under the “tracking” con-
cept, including aircraft trajectory planning problems. In addition, this approach has
been shown to handle policy-based problems, although this idea has not been explored
in-depth within this work. Since the size of the resulting NLP problem is linear on the
number of scenarios, the computational load is manageable.

Building on these pillars, we have designed a framework for flight planning under
uncertainty at the planning horizon. With this method, it is possible to design trajec-
tories with optimal average efficiency (depending on the relative cost of time and fuel);
in addition, the capability to generate flight plans that are more predictable at the cost
of some efficiency is also enabled by the proposed method. These predictability im-
provements are found by the algorithm by shifting routes to zones where the winds are
predicted with more certainty, which is expensive in terms of efficiency, and by choosing
higher airspeeds when overflying these regions, which is cheaper. Finally, a dynamic air-
speed management paradigm where the aircraft increases or decreases its true airspeed
in proportion to the accumulated delay is studied within this framework. It is shown
that the predictability can be improved at almost no cost in terms of average efficiency;

155



156 Conclusions and future work

however, the price is a significant increase on the uncertainty in fuel burn.
A transatlantic flight scenario was studied to illustrate these findings. While these

numbers are likely not representative of general costs or benefits, they might give an
indication of the shape and order of magnitude of the benefits. If the airspeed is fixed,
the arrival window for the maximum average efficiency flight plan of this flight has a
size of 6 minutes; a 1-minute reduction of the size of this window can be achieved with
a 30-second increment in average flight duration. However, additional reductions in
uncertainty become substantially more expensive: for example, reducing this range by
another minute demands a 3-minute increase in average flight time. A similar pattern
of diminishing returns is present in the variable airspeed case, though the relationship
becomes more complex due to the interplay between fuel burn and flight duration,
mediated through the airspeed schedule. Finally, we found that the proposed dynamic
airspeed management can improve predictability arbitrarily, but even a halving of the
time uncertainty can result on a two-fold or even three-fold increase in the fuel burn
uncertainty at a high cost index.

While convective activity cannot be forecasted with complete precision at planning
horizons, the presence of preconditions for the development of thunderstorms can be
computed in a probabilistic manner. We have integrated this indicator into the proposed
trajectory planning framework in order to consider the predictability impact of flying
through areas where convection may develop. The test scenario illustrates the emergent
tradeoffs, showing that exposition to potential convective phenomena can be reduced
through flight planning; however, this again comes at a cost of either average efficiency
or additional exposition to wind-related uncertainty.

At a tactical horizon, we have presented a framework for the generation of trajectories
under uncertain convective environments. We build a model of the stochastic evolution
of convective cells based on deterministic nowcasts derived from satellite data. Then,
we employ the information from this model in an optimal control framework that is ini-
tialized through a randomized heuristic procedure, with the goal of exploring the local
minima of the problem. By employing this method, a set of efficient and safe (and, thus,
predictable) trajectory options can be generated automatically, allowing pilots and con-
trollers to choose the one that best fits into the traffic situation. This development could
be employed in the future to develop applications in both onboard and ground-based
Decision Support Tool (DST). At the airborne side, pilots could employ such a DST
to quickly obtain and evaluate flight path alternatives; in the ground, it could help air
traffic controllers to assign time-based metering slots to aircraft flying through weather
impacted regions and/or group aircraft trajectories into weather-avoiding flows that are
easier to manage. Finally, it could be employed as a basis for trajectory synchronization
and negotiation between air traffic control and the aircraft.

We employ this approach to solve a scenario where an aircraft has to arrive to a
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given waypoint at a specific time, crossing a group of convective cells. The method
successfully identifies potential deviation trajectories, employing different corridors be-
tween the thunderstorms: they are classified in terms of trajectory cost and exposition
to thunderstorm encounters. As these encounters lead to trajectory modifications that
would reduce downstream predictability, it is in the interest of the whole ATM system
to plan trajectories that reduce the chance that these events take place.

To summarize, this thesis develops methods based on optimal controls for trajec-
tory planning under uncertainty. We have studied the trade-offs involved and shown
how these methods can generate the relevant information and insights to assess the
costs of enhancing predictability through improved flight planning. This improvement
in predictability can then be leveraged by the ATM system to increase capacity and
reduce delays and emissions. From the results presented, we can therefore conclude
that the proposed optimal control techniques could serve as a step towards systems and
tools for automated trajectory planning under uncertainty, leading to more efficient and
predictable ATM operations.

9.1 Future Work

The work carried out within this thesis opens up numerous avenues of research. In
this section, we will proceed to explore the most prominent ones:

9.1.1 Validation

Validation exercises are also necessary in order to demonstrate the benefits of our
methods in practical terms. On one hand, it must be shown that the solution provided
by the method is valid in statistical terms; on the other hand, the potential benefits
must be quantified for different routes and dates in a certain airspace region. Further
analysis is also necessary in order to improve our understanding of the relationship
between trajectory predictability and ATM performance and the costs of improving
predictability through flight planning should be quantified in a systematic way. These
studies would lay the necessary groundwork for the design of policies that provide the
right incentives to flight planners to produce more predictable flight plans and, therefore,
increase the efficiency of the system as a whole.

9.1.2 Extended Aircraft Dynamics

A clear field of potential future inquiry would be an extension of the aircraft dynamics
to a full 4D concept with the addition of a vertical profile (changing flight levels) and,
perhaps, multiple aerodynamic configurations. Because we work within an optimal
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control framework, incorporating a vertical dimension in a free routing framework1 does
not fundamentally change the core problem and the same concepts can be applied. This
is particularly interesting in the context of tactical trajectory planning, as overflying a
convective cell at a higher altitude is sometimes another alternative.

A more challenging modification would be the consideration of structured airspaces,
as most aircraft operations will take place under this paradigm in the short and medium
term. The selection of discrete flight levels could be modeled with an appropriately
shaped penalty function and a multi-step initialization procedure; however, the selection
of the horizontal route (as a sequence of selected airways and waypoints) represents a
greater challenge, likely requiring the employment of MINLP optimization techniques
or hybrid optimization methods.

9.1.3 Multiple Uncertainty Sources

Another relevant addition to the planning model would the incorporation of addi-
tional uncertainty sources. Temperature is the next obvious choice, as it influences
engine performance and air density (at a given pressure level) and, thus, aerodynamic
performance. Furthermore, its inclusion is straightforward as uncertainty in temperature
can be modeled using the same ensemble forecasts as for wind.

Other relevant sources of uncertainty can be included, such as aircraft mass, air-
craft performance and takeoff time. The inclusion of these factors would be somewhat
more complex, as the new stochastic quadrature rule would need to integrate them “or-
thogonally” with respect to weather uncertainty. Two possibilities can be mentioned:
modeling meteorological deviations from the mean as significant “patterns” weighed by
continuous random variables, in order to employ a multidimensional SQR, or generating
the SQR as a tensor product of the ensemble SQR and another SQR.

The consideration of these additional uncertainties would be useful to model shorter
flight legs, where there is not enough time for wind-related uncertainties to accumulate.
In particular, climb and descent operations represent a popular research topic in the
field of trajectory optimization, and studying them under existing uncertainties would
be valuable.

9.1.4 Fast Quasi-Optimal Heuristics

While numerical optimal control with direct methods is an effective framework for
the calculation of optimal trajectories, it is not guaranteed to converge to a solution
in a given timeframe. For certain applications, requiring real-time or near real-time
computational times, it may be necessary to sacrifice some of the advantages of optimal

1Discrete flight levels present a bigger challenge for optimal control, but some options are still
available.
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control in favour of speed. One possible approach to this problem would involve fast
heuristics or metaheuristics, leveraging high-performance computational platforms (such
as the Graphics Processing Unit (GPU)) to simulate multiple scenarios simultaneously.
We present some preliminary results on this research line in [8].

9.1.5 Estimation of the Cost of Convection

In order to consider convection at the planning stage, a value for the convective
penalty parameter (CP) must be chosen. As shown in Section 6.1, this requires the
estimation of a model of the costs of flying through regions where convection may be
present. In this way, its impact can be translated into average costs and predictability
losses, which allows the determination of CP from the CI and DP parameters.

9.1.6 Stochastic Convection Extensions

The stochastic model of the evolution of convective cells can be enhanced in mul-
tiple ways. In first place, the consideration of the vertical dimension by including the
estimated echo tops of the convective objects would allow for the formulation of full
4D convective avoidance problems. In second place, additional meteorological and oro-
graphic variables could be included in the set of predictors to enhance accuracy, if they
prove informative. Finally, modeling the growth, formation, decay and dissipation pro-
cesses could also prove valuable.

Alternatively, other information such as NWP convective ensembles or pilot avoid-
ance models could be included in the model in order to increase the realism of the
proposed trajectories.
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APPENDIX

A

Tracking Feasibility for Linear Systems

In this appendix, we discuss the conditions under which a tracking scheme is feasible
for a linear system (if f and h are regular enough, similar arguments can be made in the
nonlinear case replacing the matrices by the jacobians of the corresponding functions).
We neglect here the inequality constraints, as they fulfill a similar role as in deterministic
optimal control (with the additional implication that they must be fulfilled for every
realization of ξ). Consider the linear system:

ẋ = Ax +Bzz +Buu + Cξ

0 = Dx + Ezz + Euu + Fξ,

and partition the state, algebraic and control vectors into tracked and non-tracked
parts (with q denoting the tracked part and r the untracked part):

x =
[

xq
xr

]
, z =

[
zq
zr

]
, u =

[
uq
ur

]
,

with xq ∈ Rqx , xr ∈ Rnx−qx , zq ∈ Rqz , zr ∈ Rnx−qz , uq ∈ Rqu , and ur ∈ Rnu−qu

Let us define

yq =
[

zq
uq

]
, yr =

[
zr
ur

]
, and y =

[
yq
yr

]
and rearrange the original system as

ẋ = Ax +By + Cξ,

0 = Dx + Ey + Fξ.

We partition this system in the same form, according to tracked and untracked part:[
ẋq
ẋr

]
=
[
Aqq Aqr

Arq Arr

][
xq
xr

]
+
[
Bqq Bqr

Brq Brr

][
yq
yr

]
+
[
Cq

Cr

]
ξ (A.1)

0 =
[
Dq Dr

] [xq
xr

]
+
[
Eq Er

] [yq
yr

]
+ Fξ. (A.2)
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For the tracking scheme to be feasible, we need to be able to track a trajectory for
different values of the uncertainty ξ; since this system is linear, it is enough to determine
if the trajectory xq(t) = 0, yq(t) = 0 can be tracked. By plugging this tracking trajectory
in Equations (A.1)(A.2), we can observe that this is true if, for every pair of values that
(ξ, xr) attains in the complete trajectory, there is a value of yr that solves the linear
system: [

Bqr

Er

]
yr = −

[
Cq

F

]
ξ −

[
Aqr

Dr

]
xr.

The matrix Q :=
[
Bqr

Er

]
∈ Rny−qy×ny−qy is square; therefore, a sufficient (but not

necessary) condition for the feasibility of a tracking scheme is Q being full-rank. Since
Bqr represents the dependence of the tracked states on the untracked controls and al-
gebraic states and Er represents the dependence of the algebraic conditions on the
untracked controls and algebraic states, an intuitive interpretation of this condition is
the capacity of choosing the algebraic conditions and the derivatives of the tracked
states with the untracked controls and algebraic states, which implies that the impact
of the uncertainty on the tracked states can be fully compensated without violating the
algebraic condition.
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